Схемы зарядных устройств гальванических элементов. Схемы устройств для восстановления(регенерации) гальванических элементов питания (батареек)


Вопрос повторного использования гальванических элементов питания марганцево-цинковой (МЦ) системы издавна волновал любителей электроники. На протяжении многих лет применялись самые разнообразные способы “оживления”элементов: шприцевание водой, кипячение, деформация стакана, зарядка различными токами. В отдельных случаях наблюдался всплеск ЭДС с последующим ее быстрым угасанием. Ожидаемой емкости элементы не набирали, а порою, они текли и даже взрывались.

Но информация о работах в этой области постоянно появлялась в технической литературе. В потоке информации более двух десятилетий назад промелькнуло сообщение о способе регенерации (восстановления) элементов, предложенном инженером И. Алимовым. Но, к сожалению, этот способ не удостоился внимания массового читателя, поскольку не содержал сведений о рациональных токовых режимах. По этой же причине появившиеся в продаже зарядные устройства были малоэффективными, а порою просто неработоспособными.

Воспользовавшись идеей и предложенной И. Алимовым схемой, автору этих строк удалось определить оптимальные токовые режимы регенерации, исследовать и разработать различные диагностические устройства. И регенерация стала возможной для большинства элементов. Они порою обретали емкость, несколько превосходящую первоначальную.

Разработанные диагностические устройства, о некоторых из которых пойдет рассказ позже, позволяют определить пригодность или непригодность элементов к регенерации независимо от величины ЭДС элемента. И восстанавливать нужно именно элементы, а не батареи из них. Поскольку даже один из последовательно соединенных элементов батареи, пришедший в негодность (разряженный ниже допустимого уровня) делает невозможным восстановление батареи. По этой же причине не следует заряжать цепочку элементов в последовательном соединении, поскольку наихудший элемент исказит и ограничит токовый режим настолько, что регенерация окажется или весьма затяжной или ее вообще не будет.

Что касается процесса зарядки, он должен проводиться асимметричным током при вполне определенном напряжении - 2,4 ... 2,45В. При меньшем напряжении регенерация весьма затягивается, элементы даже после 8 ...10-часовой зарядки не набирают половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность. По этим причинам становится очевидным применение соединительных проводов между трансформатором и зарядными цепями возможно большего сечения. Таковы вкратце отправные моменты, которые следует учитывать при разработке и изготовлении зарядных устройств.

А теперь о диагностике элементов. Смысл ее состоит в определении способности элемента “держать” определенную нагрузку, например, в виде резистора сопротивлением 10 Ом. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1В (элемент с меньшим напряжением однозначно непригоден к регенерации). Затем нагружают элемент на 1...2с. указанным резистором. Если напряжение элемента упадет не более чем на 0,2В, он пригоден к регенерации.

Если нет вольтметра, диагностическое устройство можно изготовить по схеме, приведенной на рис. 1. В нем индикатором служит светодиод HL1, включенный в коллекторную цепь транзистора VT1 - на нем собран электронный ключ. На вход транзисторного каскада подают (с помощью щупов ХР1 и ХР2) напряжение с проверяемого гальванического элемента.

При допустимом остаточном напряжении элемента светодиод ярко вспыхнет. Когда будет нажата (кратковременно!) кнопка SB1, яркость светодиода должна упасть незначительно, что будет свидетельствовать о пригодности элемента к регенерации. Если же светодиод не вспыхнет при подключении элемента к устройству или погаснет при нажатии кнопки, такой элемент для регенерации не годится.

Рис.2.

Резисторы диагностического устройства - МЛТ-0,125, транзистор - любой из серии КТ315, источник питания - элемент 332 либо 316. Все детали устройства можно смонтировать в небольшом корпусе (рис. 2), расположив снаружи источник питания, самодельный кнопочный выключатель и площадку - щуп ХР1 из медной пластины. Из корпуса выводят многожильный монтажный провод в изоляции с наконечником - щупом ХР2.

Проверяя элемент, его ставят плюсовым выводом на площадку и касаются щупом ХР2 минусового вывода. Резистор R2 подбирают такого сопротивления, чтобы светодиод при напряжении 1,2В и выше светился ярко, при снижении напряжения до 1В его яркость падала, а при меньшем напряжении свечение исчезало.

Рис.3.

При разработке постоянно действующего зарядного устройства узел диагностики можно совместить, например, с блоком питания (рис. 3). Правда, питаться узел диагностики будет переменным напряжением, снимаемым со вторичной обмотки понижающего трансформатора Т1. Но светодиод HL1 в данном случае играет роль полупроводникового выпрямительного диода, обеспечивающего однополупериодное напряжение для работы транзисторного каскада.

Для ограничения яркости светодиода в эмиттерную цепь транзистора включен резистор R4 небольшого сопротивления. Во время диагностики щуп ХР2 должен соединяться с плюсовым выводом элемента, а ХРЗ - с минусовым. В разъем XS1 вставляют вилку блока регенерации, с которым познакомимся позже.

Самая ответственная деталь блока питания - трансформатор - ведь напряжение на его вторичной обмотке должно быть строго в пределах 2,4 ... 2,45В независимо от количества подключенных к ней в качестве нагрузки регенерируемых элементов. Готового трансформатора с таким выходным напряжением найти не удастся, поэтому один из вариантов - приспособить имеющийся подходящий трансформатор мощностью не менее 3 Вт, намотав на нем дополнительную вторичную обмотку на нужное напряжение. Провод должен быть марки ПЭЛ или ПЭВ диаметром 0,8 ...1 мм.

Для этих целей подойдут унифицированные выходные трансформаторы кадровой развертки телевизоров (ТВК), у которых достаточно смотать имеющуюся вторичную обмотку и намотать тем же проводом новую. К примеру, для трансформатора ТВК-70, вторичная обмотка которого содержит 190 витков, нужно намотать в два провода 55 витков.

Если есть трансформатор ТВК-70 или ТВК-110 с 146 витками во вторичной обмотке, вместо нее достаточно намотать тоже в два провода 33 витка. У ТВК-110А сматывают все 210 витков вторичной обмотки и размещают вместо нее 37 витков провода диаметром 0,8 мм. Подойдет и ТВК от старых ламповых телевизоров, например - “Темп - 6М” или “Темп-7М” и т.д., содержащий 168 витков вторичной обмотки. Вместо нее укладывают в два провода (в крайнем случае, можно и в один) 33 витка.

Если же вариант с готовым трансформатором неприемлем, придется изготовить трансформатор самим. Для этого нужно из имеющейся трансформаторной стали (типов Ш, УШ, ШЛ и т. д.) набрать магнитопровод сечением сердечника около 4 см 2 и намотать на магнитопровод обмотки трансформатора, предварительно рассчитав их число витков. Многие годы автор пользуется простейшими эмпирическими формулами, обеспечивающими тем не менее сравнительно высокую точность расчета. Так, число витков первичной (сетевой) обмотки определяют по формуле:

W 1 = K*Uc/S, где:

  • W 1 - число витков первичной обмотки;
  • К - коэффициент, учитывающий качество стали и КПД трансформатора;
  • Uc - напряжение сети, 220В;
  • S - сечение магнитопровода, см 2 .

Коэффициент К для витой стали берут равным 35, для стали УШ - 40, для остальной стали - 50.

Число витков вторичной обмотки (W2) определяют по формуле:

W 2 = W 1 *2,4/Uc.

Если при расчете вторичной обмотки получится нецелое число витков, его округляют до большего целого числа и пересчитывают по этому значению число витков первичной обмотки.

Диаметр провода обмоток зависит от протекающего по ним тока. Определить ток нетрудно делением мощности трансформатора на напряжение обмотки. А уже по таблицам справочников для заданного тока определяют диаметр провода. К примеру, для трансформатора мощностью 6 Вт первичную обмотку нужно намотать проводом диаметром 0,14 ... 0,2 мм, а вторичную - 1...1,2 мм.

Рис.4.

Трансформатор монтируют на шасси из изоляционного материала, которое сверху прикрывают крышкой (рис. 4) из такого же материала. На стенке шасси делают прорези, за которыми внутри шасси укрепляют гнезда разъема XS1 из пружинящего материала (латунь, бронза). Как и в предыдущей конструкции, на верхней панели крышки размещают детали диагностического устройства.

Рис.5.

К блоку питания подключают блок регенерации (рис. 5), рассчитанный на одновременную установку шести гальванических элементов. Каждый из ни оказывается соединенным с источником переменного напряжения через цепочку из параллельно соединенных диода и конденсатора. Причем, в один полупериод переменного напряжения “работают” диоды первой тройки элементов, в другой полупериод - диоды второй тройки. Такая мера позволила добиться равномерной нагрузки трансформатора в оба полупериода напряжения.

Поскольку ток через диод протекает лишь в один полупериод, а через конденсатор - в оба, получается “фигурная” форма зарядного тока. В результате происходит “встряхивание” ионного движения в элементе, что благоприятно сказывается на процессе регенерации (это утверждается авторским свидетельством И. Алимова). Для визуального контроля работы блока регенерации в нем установлен светодиод HL2.

Рис.6.

Конструкция блока регенерации показана на рис. 6. На шасси размерами 205 х 105 х 15 мм укреплены пружинящие контакты на расстоянии 30 мм друг от друга. Напротив контактов на уголке из изоляционного материала расположены две металлические планки (желательно медные), выполняющие также роль контактов.

Расстояние между планками и пружинящими контактами должно быть таким, чтобы между ними входил элемент 373 и надежно удерживался. Для установки же элементов 316, 332, 343 следует изготовить вставки с переходными пружинами, которые обеспечат соединение элемента с контактами блока регенерации. На боковой стенке шасси размещены планки из фольгированного стеклотекстолита (либо просто медные полоски) - вилки разъема ХР4. На верхней панели шасси расположен светодиод HL2.

Как было сказано выше, прежде чем начать регенерацию элементов, их нужно проверить на диагностическом устройстве. Из нескольких отобранных для регенерации элементов желательно заметить наиболее разряженный, чтобы в дальнейшем следить за его восстановлением. Продолжительность регенерации 4 ... 6, а иногда и 8 ч.

Периодически тот или иной элемент можно вынимать из блока регенерации и проверять на диагностическом устройстве. Еще лучше следить с помощью вольтметра за напряжением на заряжаемых элементах. Как только оно достигнет 1,8...1,9В, регенерацию прекращают, иначе элемент может перезарядиться и выйти из строя. Аналогично поступают и в случае нагрева какого-либо элемента.

И последнее. Не пытайтесь заряжать элементы, “забракованные” диагностическим устройством. Помните, что полуразряженные элементы, особенно долго хранившиеся в таком состоянии, как правило, теряют способность к регенерации в результате сложных химических процессов, происходящих в электролите и на электродах элементов. Деформация стаканов, подтеки на них также свидетельствуют о невозможности восстановления элементов.

Лучше всего восстанавливаются элементы, работавшие в детских игрушках, если ставить их на регенерацию сразу же после разрядки. Причем такие элементы, особенно с цинковыми стаканами, допускают многоразовую регенерацию, несколько хуже ведут себя современные элементы в металлическом корпусе. В любом случае главное - не допускать глубокой разрядки элемента и вовремя поставить его на регенерацию.

О низкой эффективности заряда уже говорилось ранее. Однако если в силу тех или иных обстоятельств такой заряд желателен, то его надо проводить импульсами разнополярного тока. Вслед за импульсом тока заряда должен следовать меньший по амплитуде импульс разрядного тока противоположной полярности. Такой режим легко создать с помощью зарядного устройства, схема которого представлена на рисунке.

Асимметрия импульсов тока заряда/разряда достигается за счет различия номиналов резисторов, включенных последовательно с диодами, имеющими встречное включение. Разумеется, в зависимости от типа заряжаемых элементов (батарей) может варьироваться величина напряжения на вторичной обмотке трансформатора и номиналы резисторов. В среднем зарядный ток должен быть заметно меньше, чем ток разряда при эксплуатации элементов. Время заряда должно составлять не менее 15-20 часов, причем заряд должен обеспечивать энергию на 50 % большую, чем энергия разряда.

Ни в коем случае нельзя заряжать гальванические элементы, срок хранения которых истек. Это чревато ускоренным нарушением герметичности корпуса и вытеканием едкого электролита. Вообще сторонникам заряда гальванических элементов стоит прислушаться к печально известной поговорке - скупой платит дважды! Притом во второй раз куда больше, чем в первый, ибо, скорее всего, ему придется покупать заново уже не комплект элементов, а новый КПК взамен загубленного.

Дополнительные материалы:

  • Портативное зарядное устройство является одним из лучших аксессуаров для мобильного телефона, на который вы можете потратить свои деньги. В этом руководстве, мы поможем вам выбрать Power Bank, который станет идеальным…
  • Многие привыкли называть iPhone культовым телефоном, которому все нипочем. Идеальный экран, идеальный дизайн, идеальный корпус - этот гаджет разве что будущее не предсказывает.Однако ремонт Айфона все же порой требуется, что…
  • Если у вас есть несколько устройств, таких как смартфон и планшет, может быть достаточно трудно отслеживать определенные аспекты их работы. Например уровень заряда аккумуляторов. Существуют методы, позволяющие привязать ваш Android…
  • Повербанки становятся популярными, поскольку наши гаджеты становятся более умными и универсальными инструментами в повседневной жизни. Созданные специально для различных типов коммуникаций, таких как звонки, СМС, электронные письма и другие задачи,…
  • Вы потратили приличную сумму денег на смарт-часы, а затем столкнулись с проблемой быстрого разряда батареи на устройстве? Это проблема, с которой сталкиваются многие из нас с этими гаджетами. Мы все…

Регенерация гальванических элементов и батарей

Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи "Крона ВЦ", БАСГ и другие.

Наилучший способ регенерации химических источников питания - пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- около 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.

Лучших результатов можно достигнуть, если применять зарядное устройство, выполненное по схеме, представленной на рис. 1 . В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.

рис. 1

Особенности некоторых видов гальванических элементов и их краткие характеристики

Висмутисто - магниевый элемент

Анодом служит магний, катодом -- оксид висмута, а электролитом -- водный раствор бромида магния. Обладает очень высокой энергоемкостью, и повышенным напряжением (1,97--2,1 Вольт).

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость: около 103--160 Вт·ч/кг.

Удельная энергоплотность: около 205--248 Вт·ч/дм3.

ЭДС: 2,1 Вольта.

Рабочая температура: -20 +55 С°.

Диоксисульфатно - ртутный элемент

Диоксисульфатно-ртутный элемент - это первичный химический источник тока, в котором анодом является цинк, анодом - смесь окиси ртути и сульфата ртути с графитом (5%), а электролитом - водный раствор сульфата цинка. Отличается высокой мощностью и энергоплотностью.

Характеристики

Теоретическая энергоемкость:

Удельная энергоемкость:110-140 Вт/час/кг.

Удельная энергоплотность: 623-645 Вт/час/дм3.

ЭДС:1,358Вольта.

Рабочая температура: -14 + 60°С.

Утилизация

Этот элемент утилизируется согласно общим правилам утилизации оборудования, препаратов, сплавов и соединений содержащих ртуть.

Литий ионный аккумулятор (Li-ion)

Тип электрического аккумулятора, широко распространённый в современной бытовой электронной технике. В настоящее время это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты.

Более совершенная конструкция литий-ионного аккумулятора называется литий-полимерным аккумулятором.

Первый литий-ионный аккумулятор разработала корпорация Sony в 1991 году.

Характеристики

Энергетическая плотность: 110 ... 160 Вт*ч/кг

Внутреннее сопротивление: 150 ... 250 мОм (для батареи 7,2 В)

Число циклов заряд/разряд до потери ёмкости на 80%: 500-1000

Время быстрого заряда: 2-4 часа

Допустимый перезаряд: очень низкий

Саморазряд при комнатной температуре: 10% в месяц

Напряжение в элементе: 3,6 В

Ток нагрузки относительно ёмкости:

Пиковый: больше 2С

Наиболее приемлемый: до 1С

Диапазон рабочих температур: -20 - +60 °С

Устройство

В начале в качестве отрицательных пластин применялся кокс (продукт переработки угля), в дальнейшем применяется графит. В качестве положительных пластин применяют сплавы лития с кобальтом или марганцем. Литий-кобальтовые пластины служат дольше, а литий-марганцевые значительно безопасней и обычно имеют встроенные термопредохранитель и термодатчик.

При заряде литий-ионных аккумуляторов протекают следующие реакции:

на положительных пластинах: LiCoO2 > Li1-xCoO2 + xLi+ + xe-

на отрицательных пластинах: С + xLi+ + xe- > CLix

При разряде протекают обратные реакции.

Преимущество

Высокая энергетическая плотность.

Низкий саморазряд.

Отсутствует эффект памяти.

Простота обслуживания.

Недостатки

Li-ion аккумуляторы могут быть опасны при разрушении корпуса аккумулятора, и при неаккуратном обращении могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Попытки заряда таких аккумуляторов могут повлечь за собой взрыв. Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 70%-ом заряде от ёмкости аккумулятора. Кроме того, Li-ion аккумулятор подвержен старению, даже если он не используется: уже через два года аккумулятор теряет большую часть своей ёмкости.

Литий полимерный аккумулятор (Li-pol или Li-polymer)

Это более совершенная конструкция литий-ионного аккумулятора. Используется в мобильных телефонах, цифровой технике.

Обычные, бытовые литий-полимерные аккумуляторы не способны отдавать большой ток, но существуют специальные силовые литий-полимерные аккумуляторы, способные отдавать ток в 10 и даже 20 раз превышающий численное значение емкости (10-20С). Они широко применяются в портативном электроинструменте, в радиоуправляемых моделях

Преимущества : низкая цена за единицу емкости; большая плотность энергии на единицу объема и массы; низкий саморазряд; толщина элементов до 1 мм; возможность получать очень гибкие формы; экологически безопасные; незначительный перепад напряжения по мере разряда.

Недостаток : диапазон рабочих температур ограничен: элементы плохо работают на холоде и могут взрываться при перегреве выше 70 градусов Цельсия. Требуют специальных алгоритмов зарядки (зарядных устройств), представляют повышенную пожароопасность при неправильном обращении.

Магний-м-ДНБ элемент

Это первичный химический источник тока, в котором анодом является магний, катодом - мета-Динитробензол, а электролитом - водный раствор перхлората магния.

Параметры

Теоретическая энергоемкость:1915Вт/час/кг.

Удельная энергоемкость:121Вт/час/кг.

Удельная энергоплотность:137-154Вт/час/дм3.

ЭДС:2Вольта.

Производители

Лидером в производстве данного элемента и усовершенствовании его конструкции является фирма Marathon.

Магний перхлоратный элемент

Это первичный резервный химический источник тока, в котором анодом служит магний, катодом - двуокись марганца в смеси с графитом (до 12%), а электролитом - водный раствор перхлората магния.

Параметры

Теоретическая энергоемкость:242Вт/час/кг.

Удельная энергоемкость:118Вт/час/кг.

Удельная энергоплотность:130-150Вт/час/дм3.

ЭДС:2Вольта.

Марганцево-цинковый элемент

Это первичный химический источник тока, в котором анодом является цинк Zn, электролитом -- водный раствор гидроксида калия КОН, катодом -- оксид марганца MnO2 (пиролюзит) в смеси графитом (около 9,5 %).

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость: 67-99 Вт/час/кг

Удельная энергоплотность: 122--263 Вт/час/дмі.

ЭДС: 1,51Вольта.

Рабочая температура: ?40 +55 °C.

Медно - окисный гальванический элемент

Химический источник тока в котором анодом является цинк (реже олово), электролитом гидроксид калия, катодом оксид меди (иногда с добавлением оксида бария для увеличения емкости или оксида висмута).

История изобретения

История изобретения медно-окисного гальванического элемента ведет свое начало с 1882 года.

Изобретателем этого элемента является Лаланд. Иногда медно-окисный элемент называют так же элементом Эдисона и Ведекинда, но именно Лаланду принадлежит честь изобретения.

Параметры

Теоретическая энергоемкость:около 323,2Вт/час/кг

Удельная энергоемкость(Вт/час/кг): около - 84-127Вт/час/кг

Удельная энергоплотность(Вт/час/дм3): около - 550 Вт/час/дм3)

ЭДС: 1,15 Вольта.

Рабочая температура: -30 +45 С.

Никель - камдмиевый аккумулямтор (NiCd)

Вторичный химический источник тока, электрохимическая система которого устроена следующим образом: анодом является металлический кадмий Cd (в виде порошка), электролитом -- гидроксид калия KOH с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21-25%), катод -- гидрат окиси никеля NiOOH с графитовым порошком (около 5-8%).

ЭДС никель-кадмиевого аккумулятора около 1,45 В, удельная энергия около 45--65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды), и чистоты применяемых материалов, срок службы составляет от 100 до 3500 циклов заряд-разряд.

Параметры

Теоретическая энергоёмкость: 237 Вт·ч/кг.

Удельная энергоёмкость: 45--65 Вт·ч/кг.

Удельная энергоплотность: 50--150 Вт·ч/дм3.

Удельная мощность: 150 Вт/кг.

ЭДС: 1,2--1,35 В.

Саморазряд: 10% в месяц.

Рабочая температура: -15…+40 °С.

В отличие от обычных, одноразовых, элементов питания, NiCd-аккумулятор держит напряжение "до последнего", а затем, когда энергия аккумулятора будет исчерпана, напряжение быстро снижается.

Наиболее благоприятный режим для NiCd-аккумулятора -- разряд средними токами (фотоаппарат), заряд в течение 14 часов током, равным 0,1 от ёмкости аккумулятора, выраженной в ампер-часах.

Аккумуляторы этого типа подвержены эффекту памяти и быстро выходят из строя в случае частой зарядки неполностью разряженного аккумулятора.

Хранить NiCd аккумуляторы нужно в разряженном виде.

Области применения

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента.

Никель-кадмиевые аккумуляторы применяются на электрокарах, трамваях и троллейбусах (для питания цепей управления), речных и морских судах.

Производители

Ni-Cd аккумуляторы производят множество фирм, в том числе крупные интернациональные фирмы, такие как: GP Batteries Int. Ltd., VARTA, KONNOC, METABO, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, ANSMANN и другие.

Достоинства: Безопасная утилизация

Никель - металл гидридный аккумулятор (Ni-MH)

Вторичный химический источник тока, в котором анодом является водородный металлогидридный электрод (обычно гидрид никель-лантан или никель-литий), электролит -- гидроксид калия, катод -- оксид никеля.

История изобретения

Исследования в области технологии изготовления NiMH аккумуляторов начались в семидесятые годы и были предприняты как попытка преодоления недостатков никель-кадмиевых аккумуляторов.

Однако применяемые в то время металл-гидридные соединения были нестабильны, и требуемые характеристики не были достигнуты. В результате процесс разработки NiMH аккумуляторов застопорился.

Новые металл-гидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980.

Начиная с конца восьмидесятых годов, NiMH аккумуляторы постоянно совершенствовались, главным образом по плотности запасаемой энергии.

Их разработчики отмечали, что для NiMH технологии имеется потенциальная возможность достижения еще более высоких плотностей энергии.

Параметры

Теоретическая энергоёмкость (Вт·ч/кг): 300 Вт·ч/кг.

Удельная энергоёмкость: около -- 60-72 Вт·ч/кг.

Удельная энергоплотность (Вт·ч/дмі): около -- 150 Вт·ч/дмі.

Рабочая температура: ?40…+55 °С.

Аккумулятор, разряжаемый слабыми токами (например, в пульте дистанционного управления телевизором), быстро теряет ёмкость и выходит из строя.

Хранение

Аккумуляторы нужно хранить полностью заряженными! При хранении надо регулярно (раз в 1--2 месяца) проверять напряжение. Оно не должно падать ниже 1 В. Если же напряжение упало, необходимо зарядить аккумуляторы заново. Единственный вид аккумуляторов, которые могут храниться разряженными, -- это Ni-Cd аккумуляторы.

Области применения

High power Ni-MH Battery of Toyota NHW20 Prius, Japan

Nickel-metal hydride battery made by Varta, «Museum Autovision», AltluЯheim

Замена стандартного гальванического элемента, электромобили.

Производители

Никель-металл-гидридные аккумуляторы производятся разными фирмами, в том числе: GP, Varta, Sanyo, TDK

Ртутно - висмутисто индиевый элемент

(элемент системы «окись ртути-индий-висмут») -- химический источник тока обладающий высокой удельной энергоемкостью по массе и объему, обладает стабильным напряжением. Анод -- сплав висмута с индием, электролит гидроксид калия, катод окись ртути с графитом.

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость(Вт/час/кг): около - 77-109 Вт/час/кг

Удельная энергоплотность(Вт/час/дм3): около - 201--283 Вт/час/дм3.

ЭДС: 1,17 вольта

Применение

Считается очень надёжным источником опорного напряжения и применяется в военной технике и в особо важных случаях (аппаратура управления атомными реакторами и высокотемпературными агрегатами, применяется в телеметрических системах и других важных областях). В последние годы эта электрохимическая система значительно улучшена и находит применение в качестве источника энергии для переносных (мобильных) систем спутниковой связи и навигации в военной сфере, и для питания портативных ЭВМ.

Производители

Лидер в области производства ртутно-висмутисто-индиевых элементов и батарей -- фирма «Crompton Parkinson».

Ртутно - цинковый элемент («тип РЦ»)

Гальванический элемент в котором анодом является цинк, катодом оксид ртути, электролит -- раствор гидроксида калия.

Достоинства : постоянство напряжения и огромная энергоемкость и энергоплотность.

Недостатки : высокая цена, токсичность ртути при нарушении герметичности.

Параметры

Теорeтическая энергоёмкость: 228,72 Вт·ч/кг

Удельная энергоёмкость: до 135 Вт·ч/кг

Удельная энергоплотность: 550--750 Вт·ч/дмі).

ЭДС: 1,36 В.

Рабочая температура: -- 12…+80 С°.

Отличается невысоким внутренним сопротивлением, стабильным напряжением, высокой энергоёмкостью и энергоплотностью.

Применение

Ввиду огромной энергоплотности ртутно-цинковые элементы к 1980-м годам нашли относительно широкое применение как источники питания в часах, кардиостимуляторах, слуховой аппаратуре, фотоэкспонометрах, военных приборах ночного видения, переносной радиоаппаратуре военного назначения, в космических аппаратах. Распространены ограничено ввиду токсичности ртути и высокой стоимости, в то же время объем выпуска ртутно-цинковых батарей и элементов, оставаясь примерно на одном уровне, составляет порядка одного-полутора миллионов в год во всем мире.

Отдельно следует указать на то обстоятельство что ртутно-цинковый элемент обратим, то есть способен работать как аккумулятор. Однако при циклировании (заряд-разряд) наблюдается деградация элемента и уменьшение его емкости.

Это связано в основном со стеканием и слипанием ртути в крупные капли при разряде и с ростом дендритов цинка при заряде. Для уменьшения этих явлений предложено вводить в цинковый электрод гидроокись магния, а в окисно-ртутный электрод вводить тонкий порошок серебра (до 9 %), и частично заменять графит карбином.

Производители

Фирмы -- лидеры по производству ртутно-цинковых батарей: Union Carbide, VARTA, BEREC, Mallory.

Экологические особенности

токсичность ртути при нарушении герметичности.

Элементы типа РЦ в последнее время вытесняются более безопасными, так как проблема их раздельного сбора и, особенно, безопасной утилизации достаточно сложна.

Свинцово - плавиковый элемент

это первичный, резервный химический источник тока, в котором анодом является свинец, катодом -- двуокись свинца в смеси с графитом (около 3,5%), а электролитом -- водный раствор кремне-фтористоводородной кислоты. Отличается особенностью хорошо работать в области отрицательных температур, и способностью к разряду токами огромной силы (до 60 Ампер/дм3 площади электродов).

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость: 34--50 Вт·ч/кг

Удельная энергоплотность: 95--112 Вт·ч/дм3.

ЭДС: 1,95 Вольта.

Рабочая температура: -50 +55°С.

Свинцово - кислотный аккумулятор

Наиболее распространенный на сегодняшний день тип аккумуляторов, изобретен в 1859 году французским физиком Гастоном Планте. Основные области применения: стартерные батареи в автомобильном транспорте, аварийные источники электроэнергии.

Принцип действия

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде. Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде. При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода -- на отрицательном.

Устройство

Элемент свинцово-кислого аккумулятора состоит из положительных и отрицательных электродов, сепараторов (разделительных решеток) и электролита. Положительные электроды представляют собой свинцовую решётку, а активным веществом является окись свинца (PbO2). Отрицательные электроды также представляют собой свинцовую решётку, а активным веществом является губчатый свинец (Pb). На практике в свинец решёток добавляют сурьму в количестве 1-2 % для повышения прочности. Электроды погружены в электролит, состоящий из разбавленной серной кислоты (H2SO4). Наибольшая проводимость этого раствора при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) достигается при его плотности 1,26 г/см3. Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 ?1,31 г/см3. (Это делается потому, что при разряде свинцово-кислотного аккумулятора плотность электролита падает, и температура его замерзания, т.о, становится выше, разряженный аккумулятор может не выдержать холода.)

В новых версиях свинцовые пластины (решетки) заменяют вспененным карбоном, покрытым тонкой свинцовой пленкой *, а жидкий электролит может быть желирован силикагелем до пастообразного состояния.

Параметры

Удельная энергоемкость (Вт·ч/кг): около 30-40 Вт·ч/кг.

Удельная энергоплотность (Вт·ч/дмі): около 60-75 Вт·ч/дмі.

Рабочая температура: от минус 40 до плюс 40

Хранение

Свинцово-кислотные аккумуляторы необходимо хранить в заряженном состоянии. При температуре ниже?20 °C заряд аккумуляторов должен проводиться постоянным напряжением 2,275 В/ак, 1 раз в год, в течение 48 часов. При комнатной температуре -- 1 раз в 8 месяцев постоянным напряжением 2,4 В/ак в течение 6-12 часов. Хранение аккумуляторов при температуре выше 30 °C не рекомендуется.

Серебряно - цинковый аккумулятор

Вторичный электрохимический источник тока, в котором анодом является цинк, электролитом -- гидроксид калия, катодом -- оксид серебра. Отличается очень малым внутренним сопротивлением и большой удельной энергоёмкостью (150 Вт·ч/кг, 650 Вт·ч/дм3). ЭДС 1,85 В (рабочее напряжение 1,55 В). Применяется в авиации, космосе, военной технике, часах и др. Одной из важнейших особенностей серебряно-цинкового аккумулятора является способность (при надлежащей конструкции) отдавать в нагрузку токи колоссальной силы (до 50 Ампер на 1 Ампер·час емкости).

Параметры

Теоретическая энергоемкость: до 425 Вт·ч/кг.

Удельная энергоемкость: до 150 Вт·ч/кг.

Удельная энергоплотность: до 650 Вт·ч/дм3.

ЭДС: 1,85 В.

Рабочая температура: -40…+50 °С.

Применение

Два серебрянно-цинковых аккумулятора емкостью по 120 а.ч и напряжением 366 в применялись в луноходе, который использовался для перевозки астронавтов по Луне в ходе программы Аполлон. Максимальная теоретическая дальность пробега по луне составляла 92 км.

Производители

Лидер производства серебряно-цинковых аккумуляторов различной емкости в России является компания "РИГЕЛЬ", Санкт-Петербург.

16) Серно - магниевый элемент

Это резервный первичный химический источник тока, в котором анодом является магний, катодом - сера в смеси с графитом (до 10%), а электролитом - раствор хлорида натрия.

Параметры

Теоретическая энергоемкость:

Удельная энергоемкость:103-128 Вт/час/кг.

Удельная энергоплотность: 155-210 Вт/час/дм3.

ЭДС:1,65Вольта.

Хлористо - медно - магниевый элемент

Это первичный резервный химический источник тока, в котором анодом служит магний, катодом - однохлористая медь, а электролитом - водный раствор хлорида натрия.

Параметры

Удельная энергоемкость:38-50Вт/час/кг.

Удельная энергоплотность:63-90Вт/час/дм3.

ЭДС:1,8Вольта.

Хлористо - свинцово - магниевый элемент

Это первичный резервный химический источник тока, в котором анодом служит магний, катодом - хлористый свинец в смеси с графитом, а электролитом - раствор хлорида натрия.

Параметры

Удельная энергоемкость:45-50Вт/час/кг.

Удельная энергоплотность:70-98Вт/час/дм3.

ЭДС:1,1Вольта.

Хлоро - серебряный элемент

Это первичный химический источник тока, в котором анодом является цинк, катодом - хлористое серебро, электролитом - водный раствор хлорида аммония (нашатыря) или хлорида натрия.

В практику этот гальванический элемент введен Де-Ла-Рю в 1868 году для проведения своих опытов с электричеством. Де-Ла-Рю построил самую мощную и высоковольтную гальваническую батарею по тем временам, он использовал 14000(!) хлоро-серебряных элементов в своих знаменитых опытах с электрической искрой.

Параметры

Удельная энергоемкость:до 127 Вт/час/кг

Удельная энергоплотность:до 500 Вт/час/дм3.

ЭДС:1,05Вольта.

Рабочая температура: -15 +70°С.

Хлорсеребряно - магниевый элемент

Это первичный резервный химический источник тока, в котором анодом служит магний, катодом - хлористое серебро, а электролитом - водный раствор хлорида натрия.

Теоретическая энергоемкость:

Удельная энергоемкость:45-64Вт/час/кг.

Удельная энергоплотность:83-125Вт/час/дм3.

Городская молодежная научно-практическая конференция

«НАУЧНЫЙ ПОТЕНЦИАЛ ГОРОДА - ХХ I ВЕКУ»

СЕКЦИЯ «Электротехника, электромеханика и промышленная автоматика»

Мязитов Ришат,

Учащиеся 10 класса

общеобразовательного учреждения

Средней общеобразовательной

Школы № 22 г. Сызрани

Научный руководитель: Антипова Наталья Юрьевна

Учитель физики ОУ СОШ № 22

Консультант: Антипова Наталья Юрьевна

Учитель физики ОУ СОШ № 22

Сызрань 2010 г.

Введение_______________________________________________________________ 3

Материалы и методы исследования_________________________________________ 4

Регенерация гальванических элементов _____________________________________ 5

Диагностика элементов __________________________________________________ 5

Зарядное устройство для батареи «Крона» ___________________________________ 5

Результаты исследования _________________________________________________ 7

Заключение _____________________________________________________________ 8

Приложения ____________________________________________________________ 9

Используемая литература _________________________________________________ 12

Введение

Вопрос повторного использования гальванических элементов питания марганцево-цинковой (МЦ) системы издавна волновал любителей электроники. Идея восстановления разряженных гальванических элементов не нова. На протяжении многих лет применялись самые разнообразные способы “оживления” элементов: шприцевание водой, кипячение, деформация стакана, зарядка различными токами. В отдельных случаях наблюдался всплеск электродвижущей силы (ЭДС) с последующим ее быстрым угасанием. Ожидаемой емкости элементы не набирали, а порою, они текли и даже взрывались.

В настоящее время проблема, связанная с разрядкой гальванических элементов, очень актуальна, потому что во многих приборах, которые нас окружают, они используются. Например: пульты дистанционного управления, детские электронные игрушки, всевозможные средства коммуникации и связи (мобильные телефоны, рации и т.д.), часы, переносные аудиоплееры и т.д. Также, в связи с мировым финансовым кризисом, можно легко сэкономить на батарейках путем восстановления работоспособности разряженных элементов путем их зарядки.

Как Вы уже поняли, мы предлагаем сконструировать зарядное устройство для батарейки типа «Крона».

Почему именно «Крона» спросите Вы. А просто потому, что они самые дорогостоящие из всех гальванических элементов, и соответственно экономия будет значительная.

При работе мы использовали информацию и схемы, представленные В.Богомоловым и Алимовым, находящиеся на ссылках:

соответственно.

В настоящие время восстанавливают гальванические элементы с помощью специальных зарядных устройств (Приложение 1). Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336(Приложение 2).

Материалы и методы исследования.

Цель исследования в нашей работе – всестороннее, достоверное изучение различных видов гальванических элементов, аккумуляторов, их применение в различных устройствах, максимальное время работы до разрядки и возможные пути восстановления этих элементов с помощью зарядных устройств. Изучив материал, мы решили своими силами сконструировать зарядное устройство и выяснить его работоспособность.

В своей работе мы использовали следующие материалы:

Понижающий трансформатор

Диодный мост

Конденсатор

Вольтметр

Соединительные провода

Для достижения цели в работе мы использовали методы эмпирического уровня: наблюдение, измерение напряжения на разряженной батарейке, сравнение измеренной величины с максимальным значением. Измерение напряжения проводили с помощью аналогового и цифрового вольтметров.

Экспериментально-теоретический метод позволил нам изучить теорию о назначении и принципах работы трансформатора, диода, конденсатора и применить теорию для практической цели – мы сконструировали зарядное устройство.

Регенерация гальванических элементов

Процесс зарядки должен проводиться при вполне определенном напряжении - 10-12 В. При меньшем напряжении регенерация весьма затягивается, элементы даже после 8 ...10-часовой зарядки не набирают половинной емкости. При большем же напряжении нередки случаи вскипания элементов, и они приходят в негодность.

Для питания малогабаритных транзисторных радиоприемников часто используют аккумуляторные батареи типа 7Д-0.1, являющиеся вторичными источниками постоянного тока. Начальное напряжение нормально заряженной батареи 7Д-0.1 около 9 В. Батарея считается разряженной, если ее напряжение снизится до 6,8-7 В.

Чтобы аккумуляторная батарея вновь стала работоспособной, ее надо зарядить. Для этого через нее в течение 12-15 ч пропускают ток, сила которого численно равна примерно десятой части ее электрической емкости. При зарядке батареи ее электроды соединяют с одноименными полюсами источника постоянного тока.

Диагностика элементов.

Перед тем, как производить регенерацию гальванических элементов, необходимо выполнить их диагностику и выяснить, какие элементы можно восстановить, а какие не пригодны к регенерации. Смысл диагностики элементов состоит в определении способности элемента “держать” определенную нагрузку, например, в виде резистора сопротивлением 10 Ом. Для этого к элементу подключают вначале вольтметр и измеряют остаточное напряжение, которое не должно быть ниже 1В (элемент с меньшим напряжением однозначно непригоден к регенерации). Затем нагружают элемент на 1...2с. указанным резистором. Если напряжение элемента упадет не более чем на 0,2В, он пригоден к регенерации. Диагностику производят с помощью вольтметра.

Зарядное устройство для батареи «Крона».

Вопрос повторного использования гальванических элементов питания марганцево-цинковой (МЦ) системы издавна волновал любителей электроники и актуален до сих пор, особенно в условиях мирового финансового кризиса, когда каждый, кто использует гальванические элементы может легко сэкономить на них путем восстановления работоспособности разряженных элементов путем заряда.

Как Вы уже поняли, в данной работе речь пойдет о изготовлении зарядного устройства для гальванических элементов, а именно для батареи «крона» напряжением 9 В. Почему именно крона задумаетесь Вы. А просто потому, что она самая дорогостоящая из всех гальванических элементов и широко используется в различных радиоприемниках, радиоуправляемых игрушках (Приложение 4).

Батарейка «Крона» (также PP3, E-Block) - типоразмер . Название происходит от марки выпускавшихся в угольно-марганцевых батареек этого типоразмера «Крона ВЦ».

Технические характеристики: размеры: 48,5 мм × 26,5 мм × 17,5 мм., н 9 ., типичная щелочной батарейки 625 .(Приложение 3).

Батарея «Крона» имеет ёмкость (по паспорту) 0,5 А·ч, реально (за счёт саморазряда при хранении) в два - три раза меньше. Внутреннее сопротивление батареи «Крона» (порядок) 34 Ома.

Конструктивное исполнение

Алимов И. Регенерация гальванических элементов.- Радио. 1972, №6

Иванов Б.С. Электронные самоделки.- М.: Просвещение, 1993

Справочник радиолюбителя-конструктора.- М.:Энергия, 1973

Сафонов О.А. Справочник школьника-радиолюбителя.- М.: Просвещение, 1970

Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, второй конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода, отличающееся тем, что дополнительно содержит два светодиода, резистор, первый светодиод соединен катодом с положительной выходной клеммой устройства, а анодом соединен последовательно с третьим конденсатором и первой входной клеммой, второй светодиод соединен катодом с отрицательной выходной клеммой устройства, а анодом соединен последовательно с резистором и положительной входной клеммой. 1 ил.

Изобретение относится к электротехнической промышленности и предназначено для заряда, формовки аккумуляторных батарей (АБ) и регенерации гальванических элементов. Известно устройство для регенерации элементов и заряда АБ асимметричным током содержащее источник переменного тока, два конденсатора и два вентиля, анод одного из которых и катод другого подключены к выходным клеммам устройства, источник переменного тока образует с конденсаторами трехлучевую звезду, которая подключена одной конденсаторной ветвью к общей точке вентилей, а другими ветвями к выходным клеммам для подключения заряжаемой батареи. Недостатком этого устройства является то, что нет индикации процесса заряда АБ или регенерации химических элементов. При этом известно устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током являющееся аналогом содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, орой конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода. Данное устройство обеспечивает индикацию непосредственно процесса заряда с помощью неоновой индикаторной лампы. Недостатком этого устройства является то, что для функционирования неоновой индикатоpной лампы по целевому назначению необходимо наличие двух дополнительных диодов. Предлагаемое устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, второй конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода, дополнительно содержит два светодиода, резистор, первый светодиод соединен катодом с положительной выходной клеммой устройства, а анодом соединен последовательно с третьим конденсатором и первой входной клеммой, второй светодиод соединен катодом с отрицательной выходной клеммой устройства, а анодом соединен последовательно с резистором и положительной выходной клеммой. На чертеже представлена схема предлагаемого устройства. Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержит три конденсатора 1, 2, 3, два диода 4, 5, конденсатор 1 соединен одним выводом с входной клеммой 6, а другим выводом с положительной выходной клеммой 7 устройства, диод 4 соединен катодом с положительной выходной клеммой 7 устройства, диод 5 соединен с анодом с отрицательной выходной клеммой 8 и входной клеммой 9 устройства, конденсатор 2 соединен одним выводом с входной клеммой 6 устройства, а другим выводом с анодом диода 4 и катодом диода 5, два светодиода 10, 11, резистор 12, светодиод 10 соединен катодом с положительной выходной клеммой 7 устройства, а анодом соединен последовательно с конденсатором 3 и входной клеммой 6, светодиод 11 соединен катодом с отрицательной выходной клеммой 8 устройства, а анодом соединен последовательно с резистором 12 и положительной выходной 7 клеммой. Устройство работает следующим образом. На протяжении той части положительного полупериода напряжения сети, когда напряжение на конденсаторе 2 больше ЭДС заряжаемой АБ или регенерируемого элемента (РЭ), через конденсатор 2, диод 4, положительная выходная клемма 7 и АБ или РЭ протекает зарядный ток, а в остальную часть периода АБ или РЭ разряжается через конденсатор 1, входная клемма 5, источник переменного тока, входная клемма 9 и выходная клемма 8. Когда напряжение положительного полупериода достигает напряжения зажигания светодиода 10, он зажигается по цепи: источник переменного тока, входная клемма 6, конденсатор 3, светодиод 10, выходная клемма 7, АБ или РЭ, выходная клемма 8, входная клемма 9, источник переменного тока. Во время отрицательного полупериода светодиод 10 не светится. В случае отсутствия зарядного тока (при разрыве цепи заряда или достаточно большом внутреннем сопротивлении АБ или РЭ) во время отрицательного полупериода напряжения сети конденсатор 1 заряжается до амплитудного значения напряжения сети и это напряжение в течение всего остального полупериода поддерживается неизменным. При этом светодиод 10 не зажигается, так как в течение положительного полупериода разность напряжений на конденсаторе 1 и мгновенным сетевым напряжением недостаточна для зажигания светодиода 10. При заряде АБ или РЭ до напряжения конца заряда зажигается светодиод 11 по цепи: положительная выходная клемма 7, резистор 12, светодиод 11, отрицательная выходная клемма 8. Зажигание светодиода 11 при подключении АБ или РЭ к выходным клеммам 7, 8 и до подключения устройства к источнику переменного тока свидетельствует о нецелесообразности заряда АБ или РЭ.

Формула изобретения

Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, второй конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода, отличающееся тем, что дополнительно содержит два светодиода, резистор, первый светодиод соединен катодом с положительной выходной клеммой устройства, а анодом соединен последовательно с третьим конденсатором и первой входной клеммой, второй светодиод соединен катодом с отрицательной выходной клеммой устройства, а анодом соединен последовательно с резистором и положительной входной клеммой.