Схему измерителя емкости акб на микроконтроллере. Измерение ёмкости аккумулятора - простой и точный способ

Устройство, с помощью которого можно проверить емкость литий-ионных пальчиковых аккумуляторов. Довольно часто батареи от ноутбуков приходят в негодность из-за того, что один или несколько аккумуляторов теряют свою емкость. В итоге приходится покупать новую батарею, когда можно обойтись малой кровью и заменить эти негодные аккумуляторы.

Что понадобится для устройства:
Arduino Uno или любой другой совместимый.
16Х2 ЖК-дисплей, в котором используется драйвер Hitachi HD44780
Твердотельное реле OPTO 22
Резистор 10 МОм на 0.25 Вт
Держатель для аккумуляторов 18650
Резистор 4 Ом 6Вт
Одна кнопка и блок питания от 6 до 10В на 600 мА


Теория и эксплуатация

Напряжение,на полностью заряженной, Li-Ion батарее при отсутствии нагрузки равно 4.2В. При подключении нагрузки, напряжение быстро снижается до 3.9В, и далее медленно снижается по мере работы батареи. Ячейка считается разряженной при падении напряжения на ней ниже 3В.

В данном устройстве аккумулятор подсоединяется к одному из аналоговых выводов Arduino. Измеряется напряжение на аккумуляторе без нагрузки и контроллер ожидает нажатие кнопки “Пуск”. Если напряжение на аккумуляторе выше 3В. , при нажатии кнопки начнется тест. Для этого через твердотельное реле к аккумулятору, подключается резистор 4Ом, который будет исполнять роль нагрузки. Напряжение считывается контроллером каждые пол секунды. Используя закон Ома можно узнать ток, отдаваемый в нагрузку. I=U/R, U-считывается аналоговым входом контроллера, R=4 Ом. Так как измерения проводятся каждые пол секунды, в каждом часе получается 7200 измерений. Автор просто умножает 1/7200 часа на значение тока, и складывает получившиеся числа, пока аккумулятор не разрядится ниже 3В. В этот момент реле переключается и на дисплей выводится результат измерений в мА\ч

Распиновка ЖК-дисплея

ПИН Назначение
1 GND
2 +5V
3 GND
4 Digital PIN 2
5 Digital PIN 3
6,7,8,9,10 No connected
11 Digital PIN 5
12 Digital PIN 6
13 Digital PIN 7
14 Digital PIN 8
15 +5V
16 GND



Автор не использовал потенциометр для регулировки яркости дисплея, вместо этого он подсоединил вывод 3 к земле. Держатель аккумулятора подсоединяется минусом на землю, а плюсом к аналоговому входу 0. Между плюсом держателя и аналоговым входом включен резистор 10 МОм, выполняющий функцию подтягивающего. Твердотельное реле включается минусом к земле, а плюсом к цифровому выходу 1. Один из контактных выводов реле соединяется с плюсом держателя, между вторым выводом и землей ставится резистор 4 Ом, выполняющий роль нагрузки при разряде аккумулятора. Имейте в виду, что он будет довольно сильно греться. Кнопка и включатель подключаются согласно схеме на фото.

Так как в схеме задействуются PIN 0 и PIN 1, надо отключить их перед загрузкой программы в контроллер.
После того, как вы все соедините, зальете прошивку, прикрепленную ниже, можно попробовать протестировать аккумулятор.



На фото видно значение напряжения, которое считал контроллер.
Напряжение на нем должно быть обязательно выше 3В

Эта конструкция подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Она выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и ёмкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и применённого шунта). (См. Рис.1 и Рис.2 )

Рис.1

Рис.2

Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания.

Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G.

Максимальная зарядная ёмкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 3.

Рис.3. Принципиальная схема приставки для измерения ёмкости зарядки

Подключение к зарядному устройству - на Рис 4 .


Рис.4 Схема подключения приставки к зарядному устройству

При включении микроконтроллер сначала запрашивает требуемую ёмкость зарядки.
Устанавливается кнопкой SB1. Сброс - кнопкой SB2.
На выводе 2 (RA5)устанавливается высокий уровень, который включает реле P1, которое в свою очередь включает зарядное устройство (Рис.5 ).
Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений.

Алгоритм подсчёта ёмкости в данной приставке следующий:
1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счётчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного тока делятся на 60. Целое число записываются в счётчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений за 1 минуту в счётчике будет число среднего значения тока за минуту.
При переходе показаний секунд через ноль среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом счётчик ёмкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту. После этого счётчик среднего значения тока обнуляется и подсчёт начинается сначала. Каждый раз, после подсчёта ёмкости зарядки, производится сравнение измеренной ёмкости и заданной, и при их равенстве на дисплей выдаётся сообщение - "Зарядка завершена", а во второй строке - значение этой ёмкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к отключению реле. Зарядное устройство отключится от сети.


Рис.5

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R5) и входного напряжения (R4) с помощью эталонного амперметра и вольтметра.

Теперь о шунтах.
Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 0.5-10 Ом мощностью 5Вт (меньшее значение сопротивления будет вносить меньшую погрешность в измерение, но затруднит точную настройку тока при калибровки прибора), и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.
Для зарядного тока до 10А потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведённые испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А.

Печатная плата для данного устройства разрабатывалась под индикатор WH1602D. Но можно использовать любой подходящий индикатор, сотвественно перепаяв провода. Плата собрана таких же размеров как и жидкокристаллический индикатор и закреплена сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

Перед первым включением подстроечные резисторы установить в среднее положение.

В качестве шунта для варианта прошивки на малые токи можно применить 2 параллельно соединенных резистора млт-2 1 Ом.

В приставке можно применить индикатор WH1602D , но придется поменять местами выводы 1 и 2. А вообще- лучше свериться с документацией на индикатор.

Индикаторы фирмы МЭЛТ не будут работать, из-за несовместимости работы по 4-х битному интерфейсу.

При желании, можно подключить подсветку индикатора через токоограничительный резистор 100 Ом

Эту приставку можно использовать для определения емкости заряженного аккумулятора.

Рис.6. Определение емкости заряженного аккумулятора

В качестве нагрузки можно использовать любую нагрузку (Лампочку, резистор...), только при включении нужно выставить любую заведомо большую емкость аккумулятора и при этом следить за напряжением аккумулятора, чтобы не допускать глубокой разрядки.

(От автора) Приставка испытывалась с современным импульсным зарядным устройством для автомобильных аккумуляторов,
Данные устройства обеспечивают стабильное напряжение и ток с минимальными пульсациями.
При подсоединении же приставки к старому зарядному устройству (понижающий трансформатор и диодный выпрямитель) мне не удалось настроить показания зарядного тока из-за больших пульсаций.
Поэтому было решено изменить алгоритм измерения зарядного тока контроллером.
В новой редакции контроллер делает 255 измерений тока за 25 милисекунд (при 50Гц - период составляет 20 милисекунд). И из сделанных измерений выбирает самое большое значение.
Также происходит измерение входного напряжения, но выбирается наименьшее значение.
(При нулевом зарядном токе напряжение должно быть равно ЭДС аккумулятора.)
Однако при такой схеме перед стабилизатором 7805 необходимо поставить диод и сглаживающий конденсатор (>200 мкФ)на напряжение не менее выходного напряжения зарядного
устройства. Плохо сглаженное напряжение питания микроконтроллера приводило к сбоям в работе.
Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).
В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной около 20 см -прекрасно работает.

Модульный вариант наглядного и точного измерителя Ампер-часов аккумуляторов, собранный с минимальными затратами из компьютерного мусора.
Это мой отклик на статью .

Небольшая прелюдия…
Под моим покровительством находится парк из 70 компов, разных годов выпуска и состояния. Естественно на подавляющем количестве имеются источники бесперебойного питания (по тексту – ИБП). Организация бюджетная, денег конечно не дают, типа - делай, что хочешь, но должно всё работать. После коротких тестов с нагрузкой в виде лампочки на 150 Ватт выявил что 70% ИБП не держат нагрузку больше 1 минуты, ИБП фирмы АРС грешат контактами реле переключения (он переходит на АКБ, гудит-пищит, а на выходе полный ноль). Конечно никто мне не давал все ИБП проверить разом. Выход оказался прост: раз в пол года – год забирал компы на чистку, смазку, заодно и ИБП на тест и осмотр потрохов.

Конечно ИБП разных марок и мощностей (есть старичек на 600 Ватт 1992 года выпуска, АКБ родная сдохла этой осенью, до этого делал реанимацию 4 года назад). Если кто не в курсе в бытово-оффисных ИБП применяются АКБ разных типов, корпусов, напряжений и ёмкостей. Типовой представитель - это GP1272F2 (12 Вольт, 7 А/ч). Но попадаются и на 6В - 4,5 А/ч.

Цены на аккумуляторы часто превышаю половину цены нового ИБП. Да ещё в конторке (в которой подрабатываю) тоже скапливаются дохлые батарейки. Возник вопрос, а какова реальная ёмкость до и после поднятия из мусорной корзины, сколько минут работы можно ожидать от ИБП. И тут попалась на глаза статейка И. Нечаева в журнале "Радио" 2/2009 о подобном измерителе.
Конечно, некоторые моменты мне не понравились, такая вот я сволочь .
И так начнём-с…

Это оригинальная схема из статьи


ТТХ: ток разряда 50, 250, 500 ма, напряжение отсечки 2,5-27,5 Вольт.
Перечислю, что не понравилось: ток разряда максимальный всего 0,5а (да и ждать когда разрядится 7 ач не интересно), диапазон отсечки слишком широк и его легко сбить, на пуск через кнопку идёт весь ток, стабилизатор тока на полевике для светодиода это перебор, диод в управляющем выводе увеличивает требуемое падение на токовых резисторах до 1,8В и в случае пробоя 317 ходикам каюк.

Про ток разряда: у аккумов бывает что активная масса как бы запечатывается в намазке (не путать с сульфатацией), при этом подвижность электролита снижается и если разряжать его малым током, то он может отдать ёмкость полностью, а при установке в ИБП тест не пройдёт. Ну тогда надо разряжать его малым током и заряжать, т.е. лечить.
Модульность того, что у меня получилось, хороша тем что можно изготовить 2 и больше разрядных модуля (можно 1 и переключать токовые резисторы) разной мощности или даже типа и 2 отсекателя для 6-ти и 12-вольтовых батарей или 1 с переключателем.

Фотки моего измерителя:


Видим: блок отсекателя, токовая нагрузка, ходики китайские.
Повторюсь, работаю сисАДмином, починяю иногда материнские платы, поэтому имеется некоторая горка дохлого железа.
Начну в обратном порядке: ходики маленько модифицируются, что бы ходили при питании от 1,5 до 25 Вольт.
Схема модификации ходиков:


1117 дёрнул с дохлой материнской платы.
Резистор на 2 кОм это минимальная нагрузка стабилизатора.




соответственно схема:


Это на 2 ампера. Так как R1 оказался больше 0,75 ом пришлось добавить 2 сопротивления (это R3, два в одном на фото) что бы ток был 2 ампера. Если кто то не заметил, прокладок между микрой с транзистором на радиатор нету. Можно конечно использовать и другую схему, типа как в радио 3/2007 стр. 34, только добавьте опорное напряжение.
Токовая и термозащита в 317 (настоящей) есть.

Ну и самая страшная часть, это отсекатель.



Супер 3D-монтаж, зато всего 3см кубических, на печатке будет гораздо крупнее. Полевик, если на 6В АКБ, то очень желательно с логическим управленим.
Данная часть почти не отличается от первоначальной, кнопка пуск перенесена с сток-исток на коллектор-эммитер, переменник заменён на фиксированный делитель, китайский сверхяркий светодиод через резистор.

Возможные вариации: верхнее плечо (по исходной схеме это R4) заменить на сопротивление + переменник, ограничив таким образом диапазон настройки (требуется когда ток разряда соизмерим с ёмкостью АКБ); возможны иные идеи.

Для формул Uref=2.5v для обычных 431, а для 431L оно равно 1.25v.

Отсекатель с фиксированным напряжением:


Формула для расчета: Uотс= Uref(1+R4/R5)
или R5=(Uотс- Uref)/(Uref*R4)

Отсекатель с регулируемым напряжением:

Формула для расчета: Uотс = Uref(1+(R4+R6)/R5)
или R5 = (Uотс- Uref) / (Uref*(R4+R6))

Но тут надо считать от переменника, на нём при разряде 0,1с должно падать (Uдельта) 1,15v для 6в акб и 2,30v для 12v акб.
Поэтому формулы преобразуются и расчет несколько иной.
Uмин смотрим в таблице ниже.
R5 = Uref * R6 / Uдельта
R4 = ((Uмин -Uref) * R5) / Uмин

Каждый автовладелец задается вопросом, какой необходим прибор для измерения емкости аккумулятора. Измерение данной величины зачастую проводится при прохождении планового ТО, однако будет полезным научиться самому ее определять.

Прибор для измерения емкости аккумулятора

Емкость аккумулятора - это параметр, который определяет объем энергии, отдаваемый батареей при определенном напряжении за один час. Измеряется он в А/ч (Ампер в час), и зависит от которую определяют специальным устройством - ареометром. При покупке новой батареи все технические параметры производитель указывает на корпусе. Но эту величину можно определить и самому. Для этого существуют специальные приборы и методы.

Самый простой способ - это взять специальный тестер, например "Кулон". Это современный прибор для измерения емкости автомобильного аккумулятора, а также его напряжения. В этом случае вы затратите минимальное количество времени и получите достоверный результат. Для проверки необходимо подключить прибор к клеммам батареи и в течение нескольких секунд он определит не только емкость, а также напряжение аккумулятора и состояние пластин. Однако существуют и другие емкости АКБ.

Первый метод (классический)

К примеру, мультиметр можно использовать, как прибор для измерения емкости аккумулятора автомобиля, но с его помощью точных показаний вы не получите. Обязательным условием для данного метода (его называют методом контрольной разрядки) является полный заряд батареи. Для начала необходимо подключить к аккумулятору мощный потребитель (вполне подойдет обычная лампочка мощностью 60Вт).


После необходимо собрать цепь, которая состоит из мультиметра, АКБ, потребителя, и подать нагрузку. Если лампочка в течение 2 минут не меняет своей яркости (в противном случае аккумулятор восстановлению не подлежит), снимаем показания прибора в определенные интервалы времени. Как только показатель упадет ниже стандартного напряжения батареи (под нагрузкой она составляет 12В), начнется ее разряд. Теперь, зная промежуток времени, который потребовался на полное опустошение запаса энергии и ток нагрузки потребителя, необходимо перемножить эти значения. Произведение этих величин и является реальной емкостью АКБ. Если полученные значения отличаются от паспортных данных в меньшую сторону, необходима замена батареи. Этот метод дает возможность определить емкость любой АКБ. Недостатком данного метода являются большие затраты времени.

Второй метод

Также можно воспользоваться методом, при котором аккумулятор разряжают через резистор, применяя специальную схему. Используя секундомер определяем время, затраченное на разряд. Так как энергия будет теряться при напряжении в пределах 1 Вольта, мы с легкостью определим воспользовавшись формулой I=UR, где I - сила тока, U - напряжение, R - сопротивление. При этом необходимо избежать полной разрядки батареи, используя, например, специальное реле.

Как сделать прибор самостоятельно

При отсутствии возможности приобретения готового устройства, всегда можно собрать прибор для измерения емкости аккумулятора своими руками.

Для определения степени заряда и емкости АКБ можно воспользоваться В продаже имеется много моделей уже готовых вилок, однако можно собрать ее собственноручно. Далее рассматривается один из вариантов.

В данной модели используется расширенная шкала, благодаря чему достигается высокая точность измерений. Имеется встроенное нагрузочное сопротивление. Шкала разделена на два диапазона (0-10 В и 10-15 В), что дает дополнительное снижение погрешности измерений. Устройство также имеет 3-х вольтовую шкалу и другой вывод измерительного приспособления, давая возможность проверки отдельных банок АКБ. Шкала на 15В достигается благодаря снижению на диоде и стабилитроне напряжения. Величина тока устройства возрастает, если значение напряжения превышает уровень открытия стабилитрона. При подаче напряжения ошибочной полярности защитную функцию выполняет диод.

На схеме: R1- передает стабилитрону требуемый ток; R2 и R3 - резисторы, подобранные для микроамперметра М3240; R4 - определяет ширину узкого диапазона шкалы; R5 - нагрузочное сопротивление, включается тумблером SB1.

Сила тока нагрузки определяется по закону Ома. В расчет принимается нагрузочное сопротивление.

Прибор для измерения емкости аккумулятора АА

Емкость аккумуляторов типа АА измеряется в мА/ч (миллиампер в час). Для измерения таких батарей можно применять специальные зарядные устройства, которые определяют ток, напряжение и емкость батареи. Примером такого устройства является прибор для измерения емкости аккумулятора AccuPower IQ3, который имеет блок питания с диапазоном напряжения от 100 до 240 Вольт. Для измерения потребуется вставить аккумуляторы в устройство, и на дисплее появятся все необходимые параметры.

Определение емкости с помощью зарядного устройства

Также емкость можно определить и с помощью обычного зарядного устройства. Определив величину силы тока заряда (она указывается в характеристиках прибора), необходимо полностью зарядить аккумулятор и засечь затраченное на это время. После, перемножив эти два значения, получаем приблизительную емкость.

Более точные показания можно получить, воспользовавшись еще одним методом, для которого вам потребуется полностью заряженный АКБ, секундомер, мультиметр и потребитель (можно использовать, например, фонарик). Подключаем потребитель к аккумулятору, и при помощи мультиметра определяем ток потребления (чем он меньше, тем более достоверны результаты). Засекаем время, в течение которого светил фонарик, и полученный результат умножаем на ток потребления.

Который показал очень достойную работу, решил сделать не менее достойный и качественный цифровой вольтамперметр на микроконтроллере, по совместительству оснащённый омметром нагрузки и ёмкостеметром заряжаемых аккумуляторов. Имеется два варианта схемы вольтамперметра:

Для микроконтроллера ATmega8 в корпусе TQFP32


Для микроконтроллера ATmega8 в корпусе PDIP

Несколько вариантов печатных плат можно .

Характеристики измерителя А/В

  • измеряемое напряжение: 0 В – 30 В, шаг 10 мВ;

  • измеряемый ток: 0 А – 99 А, шаг 10 мА;
  • возможно отображение измеряемых величин на LCD дисплее (однострочном или двухстрочном).

  • Схема подключения этого универсального измерителя производится согласно рисунка:


    Измерение тока проводится с использованием шунта, который подключен последовательно с нагрузкой в цепи отрицательной (общей) клеммы блока питания. Устройство запитывается от основного БП. Дополнительной функцией, которую выполняет микроконтроллер, является управление вентилятором охлаждения радиатора выходного транзистора блока питания.




    При использовании двухстрочного дисплея имеется возможность отображения значения сопротивления подключенной нагрузки. А при использовании блока питания для зарядки литий-ионных аккумуляторов имеется функция отображения емкости АКБ, что дает возможность оценить их уровень разряда.

    Внутреннее разрешение вольтамперметра по диапазону измерения тока рассчитывается согласно выражения:

    Разрешение [мА] = 1/(R[Ом]х3.2)


    Падение напряжения на шунте не должно превышать 2.4 В, поэтому значение сопротивления шунта должно быть меньше 2.4/Imax[A].



    Фуз-биты

    При программировании и установке Fuse-битов необходимо учитывать, что микроконтроллер должен быть настроен на работу от внутреннего RC генератора 1 МГц, а также необходимо установить бит BODEN . Прошивки для .

    Настройка цифрового вольтамперметра



    Кнопка S1 – сброс/установка параметров. Для входа в режим установки измерителя надо удерживая кнопку нажатой, подать питание на схему. Первый параметр для настройки – опорное напряжение для АЦП МК. Оно является основным фактором погрешности измерений. Необходимо измерить опорное напряжение на выводе 20 микроконтроллера (для микроконтроллера в корпусе PDIP – вывод 21). Измеренное значение надо прописать в этом «сервисном меню» при помощи этой же кнопки S1 , иначе, по умолчанию, принимается значение опорного напряжения Vref = 2.56 В (соответственно техническому описанию на микроконтроллер).

    Установка значения сопротивления резистора-шунта. Если номинал шунта известен, то нажатиями на кнопку S1 необходимо добиться отображения на дисплее соответствующего значения и затем не нажимать кнопку в течении 5 с для сохранения значения. Если значение сопротивления шунта неизвестно, то необходимо на выход блока питания подключить амперметр, выставить некоторый ток при помощи регулятора ограничения тока БП и нажать кнопку S1 . Кнопку необходимо нажимать, пока показания амперметра и нашего устройства (с правой стороны на дисплее, с левой стороны отображается значение шунта) не станут равными. Для сохранения параметров кнопку не нажимать в течении 5 секунд. Также S1 используется для сброса значения электрической емкости при зарядке Li аккумуляторов.

    Сопротивление R9 – точная настройка поддиапазона делителя напряжения. Для устранения ошибки преобразования АЦП диапазон измерений разбит на два поддиапазона 0 В – 10 В и 10 В – 30 В. Для настройки необходимо на выход блока питания подключить вольтметр и установить выходное напряжение на уровне около 9 В, и регулируя R9 добиться одинаковых показаний вольтметра и нашего устройства.

    Сопротивление R10 – грубая настройка поддиапазона делителя напряжения. Процедура аналогичная точной настройке, но необходимо установить выходное напряжение блока питания около 19 В, и регулируя резистор R10 добиться совпадения показаний.

    Сопротивление R1 – регулировка контрастности LCD. Если после сборки устройства на дисплее ничего не отображается, то сперва необходимо отрегулировать контрастность дисплея.

    Разъём J1 – подключение вентилятора. Коннектор J2 – питание модуля вольтамперметра (+12 В). Если ваш блок питания имеет выход стабилизированного напряжения +12 В, то его можно подключить к этому коннектору, и в таком случае можно не использовать в схеме регулятор напряжения U2. Такое решение имеет свои плюсы т.к. возможно подключить более мощный вентилятор охлаждения. Если выхода +12 В у вашего блока питания нет, то этот коннектор необходимо оставить не подключенным.

    Разъём J3 – питание модуля вольтамперметра. Напряжение питания +35 В подается с диодного моста блока питания. Перед подключением необходимо уточнить параметры используемого регулятора напряжения U2 и уровень напряжения с диодного моста, чтобы не повредить регулятор U2. Но с другой стороны, минимальное напряжение, подаваемое на этот коннектор, не должно быть ниже 9 В или 6.5 В, если используются регуляторы с низким падением напряжения (LDO). Данный коннектор должен быть подключен независимо от того, подключен ли коннектор J2 к питанию +12 В.

    Разъём J4 – подключение линий измерения напряжения и тока.