Профили крыла для малых скоростей. Геометрические характеристики крыла

Не только лишь все знают, что для крыла летательного аппарата крайне важен так называемый профиль. Который получается если взять и перепилить крыло поперёк, перпендикулярно кромкам.
Что то вот такое, да.


Это я к чему? В очередной раз пришлось схлестнуться с очередным конструктором, который меня убеждал и давил авторитетом, мол более кривой профиль есть хорошо, полезно, ************************* (здесь были слова, которые я удалил по требованию модератора, но желающие смогут их прочесть у меня в бложике). И самолёт от этого лучше летит. Я пытался ему что то доказать, но услышан не был. И всё же попытаюсь ещё раз донести несколько простых истин не до конкретного человека, а так, вообще. О профилях и их влиянии на полёт летательного аппарата.
Начнём с самого начала. Почему летит самолёт? Потому что пропеллер крутится, да...
Потому что крыло развивает некоторую подъёмную силу. В соответствии с вот этой формулой.


Обращаем внимание на безразмерный коэффициент Су - коэффициент подъёмной силы. Он не в числителе и не в знаменателе, он просто множитель. Важен ли он? Да, важен, бесспорно. Но насколько? Обратимся к результатам виртуальных продувок. Для удобства берём три профиля одного семейства, отличающиеся только кривизной - 2%, 3%, 4%, как на картинке в заголовке записи.


Как видно на графике, чем выше кривизна, тем выше коэффициент подъёмной силы. Логично? На вот эту поляру пока не смотрим. На неё вообще редко кто то смотрит.


Выше Су, значит крыло получится лучше. Так работает логика моего оппонента. Нууууу...
Попробуем смоделировать крыло, тоже одинаковое для всех рассматриваемых профилей. Примем размах 2000 мм, хорда 300 мм, вес аппарата 2000 г. Затолкаем крыло в виртуальную трубу и получим картинки.






Найдите три отличия...Хотя отличия видны сразу и невооружённым глазом - скорость горизонтального полёта. Вот, ещё один график.


Чем более изогнут профиль, тем ниже горизонтальная скорость. Профит? С одной стороны вроде бы да, но с другой...
Большая кривизна, ниже горизонтальная скорость - но ниже и качество.


При одинаковой вертикальной скорости. То есть аппарат с профилем большей кривизны будет снижаться с такой же скоростью как и его противники, но при этом упадёт ближе к наблюдателю.


Казалось бы, ну что такое единица разницы в качестве? Не о чем говорить, правда?


Но если присмотреться к вот этому графику, то получается уже не так красиво.


Ниже горизонтальная скорость при одинаковой вертикальной и требуется больше усилий для обеспечения одинаковой горизонтальной скорости. График качества ведь не на пустом месте появился. За всё нужно платить. И где профит? А вот ещё одна картиночка.


Берём крыло с профилем меньшей кривизны, ставим его под большим углом атаки и получаем ту-же горизонтальную скорость, как и у крыла с профилем большей кривизны. И при этом по прежнему имеем более высокое качество.
Мораль сей басни такова - не злоупотребляйте кривизной профиля. Су в формуле подъёмной силы только множитель, значение которого крайне редко доходит до единицы в диапазоне лётных углов атаки. Намного большее значение имеет площадь крыла, то есть удельная нагрузка. Чем больше площадь, тем ниже удельная нагрузка, выше подъёмная сила, выше маневренность, выше устойчивость по перегрузке и далее по списку. То есть при прочих равных лучше увеличивать площадь крыла, а не кривизну профиля. Конечно когда это возможно, что далеко не всегда получается.
Если вдруг случилось, что вас загнали требованиями в угол, то есть ограничили геометрические размеры аппарата, ограничили диапазон скоростей, ограничили вообще всё, что можно - то да, нужно ставить профиль бОльшей кривизны.
Но опять таки, при условии отсутствия механизации крыла. А вот если можно применить механизацию, то...


В начале 60х Ричард Кляйн решил сделать бумажный самолетик , способный выдерживать довольно сильный ветер , высоко подниматься и хорошо планировать . После долгих экспериментов он достиг поставленной цели . Однажды Ричард показал полет своего самолетика Флойду Фогельману . Оценив полет , два друга решили запатентовать свое изобретение - «ступенчатый профиль » крыла . В одном из полетов на поле , где в свое время совершили свой полет братья Райт , самолетик пролетел 122 метра .

Аэродинамические профили Кляйна-Фогельмана модифицированные КФм (в англоязычной литературе KFm ) представляют собой целое семейство профилей , объединенных наличием «ступеньки », или нескольких . Каждый из профилей имеет свои особенности и оптимальную область применения .

На настоящий момент имеется 8 профилей КФм. Рассмотрим эти профили

КФм-1

Толщина профиля 7-9%. Ступенька на 40% хорды .

Низкая скорость сваливания , очень стабильный полет , неплохая подъемная сила , простота изготовления .

Хороший профиль для большинства моделей , хотя немного уступает КФм-2

КФм-2

Толщина 7-9%. Ступенька на 50%.

Более высокая подъемная сила , низкая скорость сваливания , стабильный центр давления . Очень прост в изготовлении , отлично подходит для большинства малых и среднеразмерных пенолетов (до 1,2-1,5м ).

КФм-3

Толщина 9-12%. Ступеньки на 50% и 75% хорды .

Более сложен в изготовлении , но обладает высокими летными характеристиками - высокой подъемной силой , низкой скоростью сваливания и механической прочностью . Отличный профиль для тяжелых моделей и планеров.

КФм-4

Толщина 6-9%. Ступеньки на 50% хорды .

Простой в изготовлении , быстрый и маневренный профиль обладает более высокой скоростью сваливания по сравнению с другими профилями КФм. Отличный выбор для пилотажных моделей . Очень практичен на летающих крыльях - позволяет летать на них медленно.

КФм-5

Ступенька на 40-50% хорды .

Добавление ступеньки на выпукло-вогнутых профилях повышает подъемную силу и в тоже время повышает жесткость крыла . Применим на верхнепланах.

КФм-6

Толщина 9-12%. Ступеньки на 25% и 50%.

Прост в изготовлении . Обладает хорошими летными характеристиками на низких скоростях, в тоже время быстр и маневренен. Невысокая скорость сваливания . Отлично подходит для летающих крыльев любых размеров. Хорош для «вторых» моделей , после тренера.

КФм-7, КФм-8

Эти профили находятся в стадии разработки. Стоит поэкспериментировать с бОльшим количеством ступеней.

В то время как большинство «обычных» профилей делаются более толстыми при необходимости увеличить подъемную силу, или более тонкими для уменьшения лобового сопротивления, профили КФм позволяют одновременно улучшить обе эти характеристики.

Так каким же образом это происходит?!

Непосредственно за ступенькой образуется устойчивый вихрь, который как бы становится частью профиля . Поток воздуха, обтекая этот комбинированный (частично жесткий, частично «воздушный») профиль , создает подъемную силу. А так как на части профиля (на участке вихря) поток воздуха трется о воздух, то лобовое сопротивление крыла с профилем КФм получается заметно ниже сопротивления аналогичного крыла с «обычным» профилем. Таким образом, аэродинамическое качество крыла с профилем КФм выше. Более того, наличие вихря препятствует срыву потока, тем самым увеличивая критический угол атаки.

Чем же профили Кляйна-Фогельмана могут быть интересны авиамоделистам?

Во-первых, эффективность профилей КФм проявляется на малых числах Рейнольдса (т.е. малых скоростях и размерах), характерных для малых авиамоделей. Во-вторых, изготовление профилей КФм довольно просто, особенно при строительстве из листовых материалов (например, потолочной плитки). Более того, в большинстве случаев, применение КФм повышает жесткость крыла .

Конечно, все это выглядит очень заманчиво, но моделист «не поверит, пока не проверит». Моделисты провели серию экспериментов для оценки характеристик профилей КФм. В частности, Рич Томсон (RICH THOMPSON) провел сравнение(обсуждение на rcgroups.com) крыла на одном самолете. При этом были проведены полеты на следующих крыльях (обратите внимание, как создан профиль ):

Плоское крыло

Симметричный двуяковыпуклый профиль Плоско-выпуклый профиль Clark
КФм-1 КФм-2 КФм-3
КФм-4 (но ступеньки на 40% хорды )

Полетные качества модели были оценены по пятибалльной системе, результаты приведены в таблице:

Показатель

Плоское

Двояко выпуклое

Плоско-выпуклое

КФМ-1

КФМ-2

КФМ-3

КФМ-4

Максимальная скорость полета

3

Обратный полет

5

Срывные характеристики

5

Чувствительность по рулю высоты

5

Медленный полет

4

Чувствительность по элеронам

3

Плавность полета

4

Полет на больших углах атаки

5

Планирование

2

Курсовая устойчивость

4

ОБЩИЙ БАЛЛ

40

Победителем среди оцененных профилей явился профиль КФм-2 (ступенька на 50% хорды на верхней стороне).

Учитывая все вышесказанное, крыло с данным профилем стоит опробовать в своей новой модели. Качество его не вызывает сомнений, а простота изготовления (из потолочной плитки и подобных материалов) играет важную роль при самостоятельном изготовлении авиамодели.

Не упустите возможность, создайте новую модель с участием профиля-победителя, качество его превосходно, а стоимость материала не «ударит по карману» - и мир в семье и любимое занятие не пострадает!

Акбар Авлияев (akbaraka)

Одним из важных этапов строительства авиамодели является расчет и проектирование крыльев. Для того, чтобы правильно спроектировать крыло, необходимо учесть несколько моментов: правильно выбрать корневой и концевой профили, правильно их выбрать исходя из нагрузок, которые они обеспечивают, а также правильно спроектировать промежуточные аэродинамические профиля.

С чего начинается конструирование крыльев

В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.

Определение размаха

Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой. Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы. Тоже самое было сделано для хвостового оперения и рулей высоты. Вес фюзеляжа был получен путем умножения площади боковой стороны, а также верха фюзеляжа на два и на плотность квадратного метра бальзы.

В результате я получил следующие данные:

  • Липа, 24 унции на кубический дюйм
  • Бальза 1/32’’, 42 унции на квадратный дюйм
  • Бальза 1/16’’, 85 унций на квадратный дюйм

Устойчивость

После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.

Для устойчивого полёта необходимо было обеспечить несколько условий:

  1. Первый критерий — значение средней аэродинамической хорды (САХ). Его можно найти геометрическим путем, если добавить к корневой хорде с двух сторон концевую, а к концевой хорде с двух сторон корневую, а потом соединить крайние точки вместе. В точке пересечения и будет находится центр САХ.
  2. Значение аэродинамического фокуса крыла составляет 0,25 от значения САХ.
  3. Этот центр необходимо найти как для крыльев, так и для рулей высоты.
  4. Далее определяется нейтральная точка самолёта: она показывает центр тяжести самолета, а также вычисляется вместе с центром давления (центром подъемной силы).
  5. Далее определяется статическая граница. Этот критерий оценивает устойчивость самолёта: чем он выше, тем больше устойчивость. Однако, чем более устойчивее самолёт, тем он более маневренный и менее управляемый. С другой стороны на слишком неустойчивом самолёте тоже нельзя летать. Среднее значение этого параметра — от 5 до 15%
  6. Также рассчитываются коэффициенты оперения. Эти коэффициенты используются для сравнения эффективности аэродинамики руля высоты через соотношение размеров и расстояния до крыла.
  7. Коэффициент вертикального оперения обычно находится между 0,35 и 0,8
  8. Коэффициент горизонтального оперения обычно между 0,02 и 0,05

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Ресурс для определения аэродинамических профилей: airfoiltools.com

Теория по основам конструирования крыльев

Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки. Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении. Наконец передняя кромка может быть отодвинута назад за лонжерон для получения закрытого поперечного каркаса, который называется D-образным и служит для восприятия крутильных нагрузок. На рисунке наиболее часто встречающиеся профиля.

  1. Верхнее крыло имеет лонжерон двутаврового сечения, у которого каркас располагается в центре, а также переднюю кромку с обшивкой, которая называется D – трубкой. D – трубка позволяет увеличить жесткость при кручении, и может быть добавлена к любым другим конструкциям лонжеронов, а также может быть расширена до задней кромки для создания полностью обшитого крыла. У данного крыла задний лонжерон просто является вертикальной опорой. Также имеется простая плоскость управления, проще говоря, закрылок, подвешенный шарнирно вверху. Такую конструкцию легко воспроизвести.
  2. Второе крыло имеет C – образный лонжерон, который имеет усиленный основной лонжерон, лучше приспособленный для восприятия лобовых нагрузок. Крыло снабжено центральным шарниром, который уменьшает щель, а также лобовое сопротивление по сравнению с верхним шарниром.
  3. У третьего профиля лонжерон в виде трубы, такие обычно делаются из пластиковых трубок, их удобно изготовлять, но если трубки непрямые или скрученные, то скрутить крыло может стать проблемой. Частично проблему можно решить, используя дополнительно D – образную трубку. Кроме того, лонжерон сделан из С – образного профиля, что значительно увеличивает жесткость крыла. Петля представляет собой округленный профиль с точкой разворота в центре закругленной передней кромки для уменьшения петельной щели и для ровных краев.
  4. Четвертый профиль имеет полностью коробчатый лонжерон с каркасом как спереди, так и сзади. Зазор имеет ту же особенность, что и предыдущий профиль, и ту же самую плоскость управления. Но у него есть обтекатели сверху и снизу для скрытия щели.

Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.

Проектирование нервюр с помощью AutoСAD

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Комплектация деталей

После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.

К сожалению, я ненашел ни одной статьи по аэродинамики "для моделиста". Ни на форумах, ни в дневниках, ни в блогах- ни где нет нужной "выжимки" по этой теме. А вопросов возникает море, особенно у новичков, да и те, кто считает себя "уже не новичком", зачастую не утруждают себя изучением теории. Но мы это исправим!)))

Сразу скажу, сильно углубляться в эту тему не буду, иначе это получится, как минимум научный труд, с кучкой непонятных формул! И тем более я не стану пугать вас такими терминами, как "число Рейнольдса"- кому будет интересно- можете почитать на досуге.

Итак, договорились- только самое нужное для нас- моделистов.)))

Силы, действующие на самолет в полете.

В полете самолет подвергается влиянию многих сил, обусловленных наличием воздуха, но все их можно представить в виде четырех главных сил: силы тяжести, подъемной силы, силы тяги винта и силы сопротивления воздуха (лобовое сопротивление). Сила тяжести остается всегда постоянной, если не считать уменьшения ее по мере расхода горючего. Подъемная сила противодействует весу самолета и может быть больше или меньше веса, в зависимости от количества энергии, затрачиваемой на движение вперед. Силе тяги винта противодействует сила сопротивления воздуха (иначе лобовое сопротивление).

При прямолинейном и горизонтальном полете эти силы взаимно уравновешиваются: сила тяги винта равна силе сопротивления воздуха, подъемная сила равна весу самолета. Ни при каком ином соотношении этих четырех основных сил прямолинейный и горизонтальный полет невозможен.

Любое изменение любой из этих сил повлияет на характер полета самолета. Если бы подъемная сила, создаваемая крыльями, увеличилась по сравнению с силой тяжести, результатом оказался бы подъем самолета вверх. Наоборот, уменьшение подъемной силы против силы тяжести вызвало бы снижение самолета, т. е. потерю высоты.

Если равновесие сил не будет соблюдаться, то самолет будет искривлять траекторию полета в сторону преобладающей силы.

Про крыло.

Размах крыла - расстояние между плоскостями, параллельными плоскости симметрии крыла, и касающимися его крайних точек. Р. к. это важная геометрическая характеристика летательного аппарата, оказывающяя влияние на его аэродинамические и лётно-технические характеристики, а также является одним из основных габаритных размеров летательного аппарата.

Удлинение крыла - отношение размаха крыла к его средней аэродинамической хорде. Для непрямоугольного крыла удлинение = (квадрат размаха)/площадь. Это можно понять, если за основу возьмём прямоугольное крыло, формула будет проще: удлинение = размах/хорду. Т.е. если крылоимеет размах 10 метров а хорда = 1 метр, то удлинение будет = 10.

Чем больше удлинение- тем меньше индуктивное сопротивление крыла, связанное с перетеканием воздуха с нижней поверхности крыла на верхнюю через законцовку с образованием концевых вихрей. В первом приближении можно считать, что характерный размер такого вихря равен хорде- и с ростом размаха вихрь становится всё меньше и меньше по сравнению с размахом крыла. Естественно, чем меньше индуктивное сопротивление- тем меньше и общее сопротивление системы, тем выше аэродинамическое качество. Естественно, у конструкторов возникает соблазн сделать удлинение как можно больше. И тут начинаются проблемы: наряду с применением высоких удлинений конструкторам приходится увеличивать прочность и жёсткость крыла, что влечет за собой непропорциональное увеличение массы крыла.

С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.

Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла.

Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении.

Стреловидные и треугольные в плане крылья в аэродинамическом отношении на дозвуковых скоростях уступают трапециевидным и прямоугольным, но на околозвуковых и сверхзвуковых имеют значительные преимущества. Поэтому такие крылья применяются на самолетах, летающих на околозвуковых и сверхзвуковых скоростях.

Крыло эллиптической формы в плане обладает самым высоким аэродинамическим качеством- минимально возможным сопротивлением при максимальной подъемной силе. К сожалению, крыло такой формы применяется не часто из-за сложности конструкции, низкой технологичности и плохих срывных характеристик. Однако сопротивление на больших углах атаки крыльев другой формы в плане всегда оценивается по отношению к эллиптическому крылу. Наилучший пример применения крыла такого вида- английский истребитель "Спитфайер".

Крыло прямоугольной формы в плане имеет самое высокое сопротивление на больших углах атаки. Однако такое крыло, как правило, имеет простую конструкцию, технологично и имеет очень неплохие срывные характеристики.

Крыло трапецеидальной формы в плане по величине воздушного сопротивления приближается к эллиптическому. Широко применялось в конструкциях серийных самолетов. Технологичность ниже, чем у прямоугольного крыла. Получение приемлемых срывных характеристик также требует некоторых конструкторских ухищрений. Однако крыло трапецеидальной формы и правильной конструкции обеспечивает минимальную массу крыла при прочих равных условиях. Истребители Bf-109 ранних серий имели трапецевидное крыло с прямыми законцовками:

Крыло комбинированной формы в плане. Как правило, форма такого крыла в плане образуется несколькими трапециями. Эффективное проектирование такого крыла предполагает проведение многочисленных продувок, выигрыш в характеристиках составляет несколько процентов по сравнению с трапецеидальным крылом.

Стреловидность крыла — угол отклонения крыла от нормали к оси симметрии самолёта, в проекции на базовую плоскость самолета. При этом положительным считается направление к хвосту.Существует стреловидность по передней кромке крыла, по задней кромке и по линии четверти хорд.

Крыло обратной стреловидности (КОС) — крыло с отрицательной стреловидностью.

Преимущества:

Улучшается управляемость на малых полётных скоростях.
-Повышает аэродинамическую эффективность во всех областях лётных режимов.
-Компоновка с крылом обратной стреловидности оптимизирует распределения давления на крыло и переднее горизонтальное оперение

Недостатки:
-КОС особо подвержено аэродинамической дивергенции (потере статической устойчивости) при достижении определённых значений скорости и углов атаки.
-Требует конструкционных материалов и технологий, обеспечивающих достаточную жёсткость конструкции.

Су-47 "Беркут" с обратной стреловидностью:

Чехословацкий планер LET L-13 с обратной стреловидностью крыла:

— отношение веса летательного аппарата к площади несущей поверхности. Выражается в кг/м² (для моделей- гр/дм²).Величина нагрузки на крыло определяет взлетно-посадочную скорость летательного аппарата, его маневренность, и срывные характеристики.

По-простому, чем меньше нагрузка, тем меньшая скорость требуется для полета, следовательно тем меньше требуется мощности двигателя.

Средней аэродинамической хордой крыла (САХ) называется хорда такого прямоугольного крыла, которое имеет одинаковые с данным крылом площадь, величину полной аэродинамической силы и положение центра давления (ЦД) при равных углах атаки. Или проще- Хорда — отрезок прямой, соединяющей две наиболее удаленные друг от друга точки профиля.

Величина и координаты САХ для каждого самолета определяются в процессе проектирования и указываются в техническом описании.

Если величина и положение САХ данного самолета неизвестны, то их можно определить.

Для крыла, прямоугольного в плане, САХ равна хорде крыла.

Для трапециевидного крыла САХ определяется путем геометрического построения. Для этого крыло самолета вычерчивается в плане (и в определенном масштабе). На продолжении корневой хорды откладывается отрезок, равный по величине концевой хорде, а на продолжении концевой хорды (вперед) откладывается отрезок, равный корневой хорде. Концы отрезков соединяют прямой линией. Затем проводят среднюю линию крыла, соединяя прямой середины корневой и концевой хорд. Через точку пересечения этих двух линий и пройдет средняя аэродинамическая хорда (САХ).


Форма крыла в поперечном сечении называется профилем крыла . Профиль крыла оказывает сильнейшее влияние на все аэродинамические характеристики крыла на всех режимах полёта. Соответственно, подбор профиля крыла - важная и ответственная задача. Впрочем, в наше время подбором профиля крыла из существующих занимаются только самодельщики.

Профиль крыла - это одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика - это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ - Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США - такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

THE END?

Продолжение следует.....

Они определяются формой профиля, формой в плане и видом крыла спереди.

Профилем крыла называется форма (контур) сечения крыла, получаемая от пересечения крыла плоскостью, параллельной плоскости симметрии самолета. На рис.3.2 показаны формы профилей крыла.


Рис. 3.2 Формы профилей крыла

1 - симметричный; 2 - не симметричный; 3 - плосковыпуклый; 4 - двояковыпуклый; 5 - S-образный;6 -ламиниризированный; 7 - чечевицеобразный; 8 - ромбовидный; 9 - D видный

Крылья первых самолетов представляли собой тонкие изогнутые пластины.

В 1910 – 1912 гг. Н.Е. Жуковским был теоретически разработан вогнутый профиль крыла 4, обладающий большой несущей способностью.

В дальнейшем перешли к плосковыпуклым и двояковыпуклым профилям 2,3.

S-образные профили 5 обладают лучшими характеристиками устойчивости. Ламинаризированные профили 6 обладают пониженным сопротивлением при полетах на максимальной скорости.

Для сверхзвуковых самолетов были разработаны чечевицеобразные профили крыла 7, образованные пересечением дуг окружностей.

Для гиперзвуковых полетов применяются ромбовидные и клиновидные профили 8,9 , предложенные К.Э. Циолковским.

Основными характеристиками профиля крыла являются (Рис.3.3):

Относительная толщина;

Относительная кривизна;

Координата максимальной толщины.


Рис. 3.3 Геометрические характеристики профиля

Хордой b называется отрезок, соединяющий точку ребра атаки и точку ребра обтекания концевые точки профиля.

Относительная толщина – это отношение максимальной толщины профиля к его хорде , измеряемое в процентах от длины хорды:

.

Здесь: c max - максимальная толщина. Это расстояние между верхним и нижним скатами профиля

Относительная толщина профилей крыльев современных дозвуковых самолетов лежит в пределах 10 – 15%, а сверхзвуковых – в пределах 2,5 – 5%. Чем тоньше профиль, тем меньше сопротивление крыла. Но при таком профиле несущие свойства и прочностные характеристики крыла ухудшаются.

Координата максимальной толщины профиля . Измеряется в процентах от хорды, считая от носка хорды:

,

Для дозвуковых профилей равна 25 – 30%, для сверхзвуковых равна 50%. Эта координата показывает, где расположена точка перехода ламинарного течения пограничного слоя в турбулентный.

Относительная кривизна (вогнутость) профиля – это отношение стрелки прогиба средней линии профиля к его хорде, измеряемое в процентах:

.

Здесь: f max – максимальная кривизна (стрелка прогиба).

Стрелкой прогиба называется максимальное отклонение средней линии профиля от его хорды.

Средняя линия профиля – это линия, проходящая через середины отрезков, соединяющих точки с одинаковой координатой на верхнем и нижнем обводах профиля.

Относительная кривизна профилей крыльев современных самолетов колеблется в пределах от 0% до 2%.

Относительная толщина и относительная кривизна профилей крыла являются важными характеристиками, влияющими на подъемную силу крыла

Исходя из требований аэродинамики и из конструктивных соображений крыло набирают из профилей с разной относительной толщиной. В корневых сечениях крыла из соображений прочности ставят более толстые профили, а на концах крыла – более тонкие.

Для получения нужных характеристик устойчивости кривизну профилей увеличивают от корня к концам крыла. Такие крылья называются аэродинамически закрученными .

Хорды профилей, составляющих крыло, могут иметь разные углы по отношению к оси фюзеляжа, которые у корня крыла больше, а на конце – меньше. Такие крылья называются геометрически закрученными . Угол, образованный так называемой средней аэродинамической хордой крыла (САХ ) с осью фюзеляжа, называется углом установки крыла (Рис.3.3-1).

Рис.3.3-1 Угол установки крыла

Величина угла установки выбирается из условий наименьшего лобового сопротивления самолета при полете с максимальной скоростью и составляет примерно 0 – 3°.

Форма крыла в плане

Крыло в плане – это проекция крыла на горизонтальную плоскость.

Крылья современных самолетов по форме в плане могут быть:

Эллипсовидные (а),

Прямоугольные(б),