Проектирование воздушно-динамического рулевого привода управляемой гиперзвуковой ракеты зенитного комплекса. Стрелки обозначают работы, то есть действия, которые совершаются для совершения событий

Структурная схема модели рулевого устройства с приводом от электродвигателя приведена на рис.4.5. Нагрузкой следует считать руль вместе с судном.

Рисунок 4.5 - Структурная схема модели электропривода руля

Перекладка руля на угол α вызывает (рис.4.6) боковое перемещение (дрейф с углом β дрейфа) и поворот судна вокруг трех взаимно перпендикулярных осей: вертикальной (рыскание с угловой скоростью ω p ), продольной (крен) и поперечной (дифферент). Кроме того, из-за увеличения сопротивления воды движению судна несколько снижается его линейная скорость v .

На рис.4.7 приведены статические характеристики момента на баллере руля М Б =f (α ) от угла перекладки α его для различных рулей при ходе судна вперед и назад. Эти характеристики нелинейные и зависят также от скорости движения v судна. При наличии дрейфа судна угол α перекладки руля заменить на угол (α+β ) между плоскостью пера руля и потоком набегающей воды. Таким образом, в воздействии руля на электродвигатель привода руля кроме собственно угла α перекладки нужно учитывать также параметры движения судна - угол β дрейфа и линейную скорость v . Это значит, что для анализа электропривода руля нужно рассматривать САУ курсом судна (рис.4.8), в которую входят авторулевой (АР ), рулевая машинка (РМ ) и судно. Рулевая машинка состоит из руля и приводящего его во вращение двигателя. Судно представлено в виде двух структурных блоков с передаточными функциями по управлению W У (р ) и по возмущению W В (р ). Приводным двигателем может быть ДПТ или АД с частотным управлением. Источником питания для ДПТ может быть либо управляемый выпрямитель, либо генератор постоянного тока. АД получает питание от преобразователя частоты.


Рисунок 4.6 - Траектория движения при повороте судна и ее параметры

Рисунок 4.7 - Статическая характеристика руля


В режиме стабилизации процесса поворота судна, если допустить, что его линейная скорость v постоянна, а зависимость боковой силы и гидродинамического момента, действующих на корпус, от угла дрейфа β линейна, и пренебречь углами крена и дифферента, то система уравнений, описывающая динамику движения судна, будет иметь вид

(4.3)

где F (t ) – функция. учитывающая действие на судно возмущающих воздействий волн, ветра, течения и др.;

а 11 , …, а 23 – коэффициенты, зависящие от формы корпуса и загрузки судна.

Рисунок 4.8. Структурная схема САУ курсом судна

Если исключить из системы (4.3) сигнал β , то будет получено дифференциальное уравнение, связывающее величину курса Ψ с углом α поворота пера руля и возмущающим сигналом F (t ):



где Т 11 , …. Т 31 – постоянные времени, определяемые через коэффициенты а 11 , …, а 23 ;

k У и k В – коэффициенты передачи САУ курсом судна, также определяемые через коэффициенты а 11 , …, а 23 .

В соответствии с (4.4) передаточные функции по управлению W У (р ) и по возмущению W В (р ) имеют вид

Уравнение механики электродвигателя рулевого устройства имеет вид

или (4.6)

где i – передаточное число редуктора между двигателем и рулем;

М С – момент сопротивления, определяемый через момент М Б на баллере руля по выражению

Момент М Б на баллере руля согласно рис.4.7 является нелинейной функцией от угла α .

(4.7)

В целом математическая модель рулевого электропривода, учитывающая судно и авторулевой, является нелинейной и описывается, как минимум, системой из уравнений (4.4), (4.5) и (4.6). Порядок этой системы – седьмой.

Вопросы для самоконтроля

1. Поясните состав и взаимодействие элементов структурной схемы ЭП рулевого устройства.

2. Поясните параметры, характеризующие процесс поворота судна, вызванный перекладкой руля.

3. Почему модель электропривода рулевого устройства должна учитывать параметры судна?

4. Какими уравнениями и в каких переменных описывается процесс движения судна с поворотом?

5. Приведите выражение передаточных функций судна по управлению и возмущению с поворотом на курсе.

6. Обоснуйте тип и порядок математической модели рулевого электропривода.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Галлямов Шамиль Рашитович. Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования: диссертация... кандидата технических наук: 05.04.13 / Галлямов Шамиль Рашитович; [Место защиты: Уфим. гос. авиац.-техн. ун-т].- Уфа, 2009.- 198 с.: ил. РГБ ОД, 61 10-5/810

Введение

Глава 1. Аналитический обзор РП ЛА 11

1.1 Состояние и перспективы развития РП ЛА 11

1.2 Анализ конструктивно-компоновочных схем РП 14

1.3 Анализ математических моделей электрогидравлических РП 24

1.4 Актуальность исследования, цель и задачи работы 41

Глава 2. Математическая модель РП с СГРМ 45

2.1 Особенности математического моделирования СГРМ 45

2.2 Влияние основных нелинейностей ЭГУ на характеристики РМ 56

2.3 Нелинейная математическая модель РП 64

2.4 Анализ результатов численного моделирования РП 81

Глава 3. Повышение качества динамических характеристик системы рулевой привод-орган управления 93

3.1 Особенности эксплуатации РП и определение факторов, влияющих на показатели качества работы 93

3.2 Имитационное моделирование СГУ в пакете Ansys CFX 111

3.3 Влияние жёсткости силовой проводки на характеристики РП 122

Глава 4. Экспериментальные исследования РП ЛА 140

4.1 Экспериментальный стенд для исследования РП Л А 140

4.2 Исследование влияния инерционной нагрузки и жесткости крепления СГРМ на динамические характеристики РП ЛА 158

4.3 Методика расчёта РП с использованием имитационного моделирования 163

4.4 Сравнительный анализ результатов численного моделирования и экспериментальных исследований РП ЛА 171

Основные результаты и выводы 178

Библиографический список 182

Введение к работе

Актуальность темы

Усовершенствование летательных аппаратов (ЛА) влечёт за собой повышение требований по надёжности, быстродействию и долговечности рулевых приводов (РП), работающих в жёстких условиях эксплуатации. Научные и производственные организации как за рубежом, так и в отечественной промышленности ведут исследования по совершенствованию РП и устройств, удовлетворяющих условиям их работы на ЛА.

РП ЛА представляет собой набор электрогидравлических и механических устройств, позволяющих с высоким быстродействием (время выхода на режим составляет менее 0.6 с.) и точностью (величина перерегулирования составляет не более 10%) развивать требуемые характеристики. Функционирование РП ЛА происходит в достаточно сложных условиях эксплуатации: воздействие вибрационных нагрузок, резкие воздействия при отстыковке ступеней ракеты, нелинейные характеристики сил трения тяг и качалок и сил инерции поворотного управляющего сопла с постоянно изменяющимся шарнирным моментом, сложные климатические условия и проблемы длительного хранения.

Максимально возможные тактико-технические характеристики беспилотных ЛА достигаются, в том числе, благодаря многочисленным конструкторским и исследовательским работам, к которым можно отнести проведение стендовых испытаний и имитационное моделирование РП. Имитационное моделирование РП с применением современных пакетов математического моделирования и С4і>проектирования позволяет снизить временные и финансовые затраты при разработке и последующей доводке РП беспилотных ЛА, исключая метод проб и ошибок. Проведение экспериментальных исследований позволяет выполнить анализ соответствия результатов численного моделирования на адекватность реальному объекту.

В данной работе разработана имитационная модель РП ЛА по результатам обработки и обобщения экспериментальных данных, полученных в ОАО «Государственный ракетный центр им. академика В.П. Макеева» и в учебно-научном инновационном центре «Гидропневмоавтоматика» на кафедре прикладной гидромеханики Уфимского государственного авиационного технического университета.

Цель и задачи работы

Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования.

Задачи

    Разработка математической модели РП и анализ результатов численного моделирования;

    Проведение экспериментальных исследований РП и сравнение их результатов с результатами численного моделирования;

4. Разработка методики расчёта с применением имитационной модели РПЛА.

Методы исследования базируются на фундаментальных методах математического моделирования физических процессов, происходящих в РП ЛА в процессе эксплуатации, методах статистического анализа экспериментальных характеристик РП и методах вычислительного эксперимента.

Научная новизна основных результатов работы

    Впервые в математической модели РП ЛА со струйным гидравлическим усилителем (СГУ) предложено использовать нелинейную модель люфта в механической передаче и эмпирическую модель гистерезиса характеристики управления электромеханического преобразователя, что позволило повысить достоверность результатов численного моделирования.

    Впервые была решена обратная задача по влиянию нежёсткости силовой проводки на изменение гидродинамического момента обратных струй, действующих на струйную трубку, вследствие чего уменьшается зона устойчивости РП. В результате проведённых исследований были получены рекомендации по снижению гидродинамического момента обратной струи.

    Впервые был определён диапазон изменения коэффициента передачи РП ЛА, при котором наблюдается его устойчивая работа. Анализ результатов численного моделирования и результатов экспериментальных исследований позволили выявить зону устойчивости РП ЛА как функцию от жёсткости силовой проводки и параметров РМ.

Практическая значимость заключается в том, что разработанная методика расчёта РП ЛА позволяет исследовать устойчивость, точность и быстродействие с учётом действующих на него эксплуатационных нагрузок. Комплекс прикладных программ, выполненных в математическом пакете, позволяет провести численное исследование имитационной модели рулевого привода и сравнить полученные результаты с экспериментальными данными.

На защиту выносятся

    Математическая модель РП ЛА;

    Результаты численного исследования имитационной модели привода;

    Результаты экспериментальных исследований РП ЛА;

    Новая схема струйного гидравлического распределителя (СГР), позволяющая увеличить область устойчивости, за счёт снижения гидродинамического воздействия обратной струи на струйную трубку.

Апробация работы

Основные теоретические положения и практические результаты работы докладывались и обсуждались на всероссийской молодёжной научно-технической конференции «Проблемы современного машиностроения» (г. Уфа 2004 г.), на международной конференции «Глобальный научный потенциал» (г. Тамбов 2006 г.), на Российской научно-технической конференции, посвященной 80-летию со дня рождения чл.-кор. РАН, профессора P.P. Мавлютова «Мавлютовские чтения» (г. Уфа 2006 г.), на конкурсе молодых специалистов

авиационно-космической отрасли (Москва, ТІШ РФ, комитет по развитию авиационно-космической техники, 2008).

Основанием для выполнения работы является план исследований госбюджетной НИР «Исследование теплофизических и гидродинамических процессов и разработка теории перспективных энергонапряженных двигателей и энергетических установок» (2008-2009 гг.), № 01200802934, Государственные контракты № ИЗ 17 от 28.07.2009 «Разработка методов расчета и совершенствование рулевых приводов ракетных двигателей» и №П934 от 20.08.2009 «Электрогидравлическая система управления регулируемой двигательной установкой твёрдого топлива многократного включения» по направлению «Ракетостроение» федеральной целевой программы «Научные и педагогические кадры инновационной России» на 2009-2013 годы.

Публикации

Основные результаты исследований по теме диссертации представлены в 16 публикациях, в том числе в 3 статьях в рекомендованных ВАК изданиях.

Структура и объем работы

Анализ математических моделей электрогидравлических РП

В настоящее время существует достаточно много исследований РП, которые используется в разных областях отечественного машиностроения .

Среди научных трудов, которые были посвящены исследованиям РП ЛА можно выделить таких авторов как А.И. Баженов, С.А. Ермаков, В.А. Корнилов, В.В. Малышев, В.А. Полковников, В.А. Чащин - Московский авиационный университет, Д.Н. Попов, В.Ф. Казмиренко, И.А. Абаринова, В.Н. Пильгунов, В.М. Фомичёв, М.Н. Жарков, В.И. Гониодский, А.С. Кочергин, И.С. Шумилов, А.Н. Густомясов, Г.Ю. Маландин, В.А. Введенский, СЕ. Семёнов, А.Б. Андреев, Н.Г. Сосновский, М.В. Сиухин, В.Я. Бочаров - МВТУ им. Баумана г. Москва, Э.Г. Гимранов, В.А. Целищев, Р.А. Сунарчин, А.В. Месропян, Ю.К. Кириллов, A.M. Русак - УГАТУ г. Уфа и работы других авторов.

В , рассматривается влияние упругости проводки на характеристики управляемости. Авторами были получены основные теоретические зависимости, которые учитывают параметры, среди которых можно выделить коэффициент передачи силовой проводки, жёсткость проводки, трение всей проводки при её равномерном движении, люфт в силовой проводки и др. Следует отметить, что расчёт величины жёсткости проводки представляет достаточно трудную задачу, так как жёсткость зависит от большинства числа факторов, учесть которые при расчёте весьма сложно. Поэтому расчёт жёсткости авторы предлагают вести на основании расчёта и анализа экспериментальных материалов. Также можно выделить вопрос, которые авторы достаточно хорошо раскрыли, о динамических характеристиках механической проводки. Здесь представлены расчётная схема механической проводки (Рисунок 1.14) и математическая модель механической проводки.

Коэффициент передачи проводки - отношение перемещения выходного звена проводки к перемещению её входного звена . Увеличение коэффициента передачи ведёт к уменьшению приведённых к входному звену проводки люфтов и увеличению приведённого трения, увеличению потребных объёмов для размещения конструкции проводки и её веса. Существенное влияние на трение, люфт и жёсткость механической проводки оказывают также местные коэффициенты передач проводки, т.е. коэффициенты передачи отельных участков проводки. Например, если имеются элементы проводки, где сосредоточено трение, то для получения меньшего трения на входном звене проводке целесообразно уменьшить местный коэффициент передачи между этим элементом и входным звеном проводки, а затем произвести увеличение коэффициента передачи на участке от указанного элемента до выходного звена проводки.

Сила сухого трения проводки Frpl с учётом инерционной нагрузки, действующей на подшипники, представлена в следующей зависимости: где л - КПД системы передачи, установленного в проводке, FTn сухого трения проводки. Схема, представленная на рисунке 1.14, поясняет функциональные связи в самой проводке и между проводкой и присоединёнными к ней механизмами. Решение в аналитическом виде и в численном виде уравнений (1) - (3) в данном источнике не представлены, так как не было возможности численно исследовать задачи такого класса. Поэтому авторы применяют метод преобразования Лапласа для математического моделирования, которое сводится к определению степени влияния на амплитудно-фазовые частотные характеристики (АФЧХ) проводки следующих параметров: а) коэффициента полезного действия проводки, характеризующего величину силы сухого трения, пропорционального инерционной нагрузке; б) силы сухого трения в проводке FTn; в) силы сухого трения золотника FTP2; г) величины люфта в проводке А. На рисунке 1.15 представлены АФЧХ механической проводки, где a) FTn = const, А = const, FTP2 = const; б) A = const, FTP2 = const; в) FTn = const, A = const. Можно отметить, что основной демпфирующей силой в этом диапазоне частот входных сигналов следует считать силу сухого трения, пропорциональную инерционной нагрузке в проводке. Этот эффект с особой очевидностью следует из рисунка 1.15 а), на котором видно, что изменение величины КПД проводки приводит к увеличению подъёма АФЧХ на резонансной частоте в несколько раз. Силы сухого трения оказывают заметное влияние на фазовые характеристики проводки в области низких частот входных сигналов. Так, например, увеличение сил сухого трения проводки и в золотнике приводит к относительному росту фазового запаздывания в этом диапазоне частот. В области частот, лежащих выше резонансной, характер влияния на фазовые характеристики противоположен рассмотренному, для правильного отображения динамических свойств проводки необходимо учитывать, наряду с сухим трением в проводке и трением в золотниках, силу сухого трения, пропорциональную инерционной нагрузке.

Влияние основных нелинейностей ЭГУ на характеристики РМ

В исследованиях не представлено результатов численного моделирования подобных математических моделей (1.13-1.19). Все динамические характеристики оценивались по передаточным функциям системы. Так в представлены передаточные функции динамической жёсткости рулевых приводов, полученные с учётом упругости жидкости, внутренней обратной связи по нагрузке, межполосных перетечек рабочей жидкости, жёсткости проводки между РП, жёсткости опоры привода, при расположении поршня в среднем положении.

На основании проведённых исследований отмечается, что амплитудная частотная характеристика динамической жёсткости при частоте возмущающей силы определяется величинами жёсткости ряда элементов (опоры, связи между рулевым приводом и рулём), упругостью рабочей жидкости и конструкции рулевого привода и не зависит от перетечек рабочей жидкости, внутренней обратной связи по нагрузке, а также от коэффициента обратной связи.

Статическая жёсткость определяется коэффициентом обратной связи, величинами жёсткости руля, системы между РП и межполосными перетечками рабочей жидкости. Упругость рабочей жидкости не влияет на статическую жёсткость привода.

Создание баллистических ракет морского базирования, стартующих из подводного положения, потребовало от разработчиков ОАО «ГРЦ им. академика В.П. Макеева» решения множества принципиально новых технических и организационных проблем, связанных с исключительно жесткими требованиями по плотности компоновки, обеспечением возможности пуска ракет из подводного и надводного положения, особенностями гидродинамических процессов движения ракеты в шахте подводной лодки при работающем ЖРД, продолжительным временем хранения ракет, более жесткими требованиями к РП морских баллистических ракет и, в частности, к габаритам и массе при отсутствии возможности проверки правильности их функционирования на протяжении всего гарантийного срока (более 15 лет), что являлось значительным отличием от условий применения РП в ракетах с наземным стартом.

Проектирование нового типа РМ началось с проведения целенаправленных лабораторных поисковых работ с применением специального масла в качестве рабочего тела вместо газа, которые доказали работоспособность конструкции СГРМ - сопла и струйного распределителя -при рабочем давлении 36...40 атм. Лабораторные испытания подтвердили, что разработанная РМ обладает скоростными и силовыми характеристиками, заданными разработчиком ракеты РСМ-25. Первая СГРМ, развивающая усилие на штоке до 400 кгс, прошла несколько этапов лабораторных конструкторских испытаний в составе РП при огневых стендовых испытаниях ЖРД (см. рисунок 1.21). По согласованию с представителем заказчика СГРМ была допущена для применения в ракете. Златоустовский машиностроительный завод обеспечил подготовку производства, изготовление и установку рулевых машин на ракеты.

В дальнейшем при создании баллистических ракет РСМ-40 и их модификаций, отличавшихся более мощными двигателями и большей массой РО, потребовалось увеличить до 2000 кгс усилие, развиваемое СГРМ. Расчеты свидетельствовали, что при рабочем давлении 36...40 атм. силовые цилиндры СГРМ, способные развить такое усилие, становятся излишне громоздкими и тяжелыми для использования в составе ЛА. Потребовалось изменить конструкцию СГРМ для обеспечения возможности его питания рабочим телом под более высоким давлением, увеличенным до 100...200 атм., но для этого потребовалось выполнить новые теоретические расчеты, провести конструкторские изыскания, организовать десятки и сотни лабораторных испытаний различных вариантов СГРМ.

Для ракеты РСМ-40 было предложено СГРМ ампулизировать и также разместить в баке окислителя первой ступени. Принятое решение в корне изменило конструктивное исполнение РП второй ступени и конструкцию стыка первой и второй ступеней. РП ЖРД второй ступени оказался утопленным в кислоте бака первой ступени. Для повышения герметичности и надежности все стыковые соединения трубопроводов рабочего тела и трубопроводов с электропроводами соединялись автоматической сваркой. Ввиду малых зазоров (до 10 мм.) между деталями в местах сварки отделу В.Г. Крылова пришлось разработать и передать в серию малогабаритные автоматические сварочные аппараты. После проведения проверки СГРМ заправляли отвакуумированным маслом - заваривали заправочные гидроразъёмы и вновь проверяли герметичность.

Испытания РП на всех этапах вели высококлассные специалисты ракетного центра, на которых лежал груз ответственности за тщательную проверку работоспособности конструкции, формирование окончательных выводов и рекомендаций о допуске РП к испытаниям в составе ЛА при бросковых и летных пусках.

На кафедре прикладной гидромеханики УГАТУ была разработана математическая модель СГРМ. Так благодаря работам , который были посвящены исследованиям распространения высоконапорной струи в струйном каскаде, были получены основные теоретические и эмпирические нагрузочные характеристики струйного каскада (см. рисунок 1.22 - рисунок 1.24). Также были получены зависимости коэффициентов восстановления расхода и давления, которые позволяют получить статические характеристики СГРМ: расходная характеристика, нагрузочная характеристика, расходно-перепадная характеристика, характеристика КПД СГРМ.

Влияние жёсткости силовой проводки на характеристики РП

В результате разности двух гидродинамических моментов Мх и М2 возникает гидродинамический момент, который действует справа от струйной трубки при её смещении в левую сторону. В результате расчётов величина гидродинамического момента составила М = 1.59-10-2Нм при смещении струйной трубки на максимальную величину - 2.4 град. (см. рисунок 3.23).

В результате проведённых расчётов гидродинамического момента, действующего на струйную трубку при её смещении можно сделать вывод, что гидродинамическое воздействие может негативно сказаться на характеристиках РМ ЛА при возвратно-поступательном движении струйной трубки. Такая ситуация постоянно возникает при полёте ракеты, особенно когда имеет место знакопеременная статическая нагрузка на выходном звене (ПУС), поэтому необходимо внести изменения в конструкцию струйного каскада для уменьшения гидродинамического момента.

В ходе доводки рулевых машин в ОАО «ГРЦ им. академика В.П. Макеева» были приняты меры по снижению гидродинамического момента и улучшению динамических характеристик РП. Для снижения гидродинамического момента каналы приёмной платы были разведены по разным плоскостям относительно плоскости, в которой движется струйная трубка, поэтому обратная струя в данном случае частично оказывает воздействие на струйную трубку. Разведение каналов приёмной платы не позволили улучшить динамические характеристики. На определённых частотах колебаний движение струйной трубки переходило в неустойчивое состояние по причине возникновения автоколебаний. Чтобы избежать неустойчивого состояния движения струйной трубки, в струйном каскаде был установлен компенсатор гидродинамического воздействия, который хорошо представлен на рисунок 3.24.

В РП ЛА используется смешанный тип жёсткой силовой проводки: управляющее воздействие передаётся возвратно-поступательным движением тяг, работающих на растяжение и сжатие, и вращательным и поворотным движением валов, работающих на кручение. Величина суммарной жёсткости силовой проводки по результатам проведенных экспериментальных исследований (здесь учитывается только механическая жёсткость, как отношение усилия, воздействующего на входное или выходное звено проводки к её продольной деформации) составляет от 107...108 Н/м. На сегодняшний день существует достаточно много работ, посвященных вопросам повышения жёсткости силовой проводки, и её влияние на динамические характеристики РП , в которых рассматриваются, в основном вопросы, связанные с увеличением жёсткости силовой проводки ЛА за счёт изменения конструктивных элементов. В качестве примера в представлены некоторые конструктивные примеры по повышению жёсткости силовой проводки.

При анализе влияния подобного явления на динамические характеристики РП было сделано допущение, что увеличение зазора люфта прямо пропорционально увеличению жёсткости силовой проводки. Данное допущение было сделано при анализе экспериментальных данных, полученных в ОАО «ГРЦ им. академика В.П. Макеева». При изменении жесткости силовой проводки в диапазоне от 107 Н/м до 108Н/м, значение зазора люфта изменяется соответственно в пределах А = 0..2-4 м.

Для исследования данного явления на характеристики РП используется разработанная математическая модель, представленная в главе 2 п. 2.3 (2.67) - (2.81). Для получения множества решений был разработан цикл, который представлен на рисунке 3.26. Следует отметить, что в алгоритме вместо обозначения жёсткости силовой проводки сх используется обозначение ср.

Как и в случае анализа влияния некоторых нелинейностей на показатели качества переходных процессов, представленного в п. 3.1, тп, а, - рабочие переменные, ш х - круговая частота, с которой изменяется управляющее воздействие (в уравнение (2. 40) вместо UBX подставляется U} =UBXsmlwxt]), Ах, ср - зазор люфта и жёсткость силовой проводки, А2 и с2 - массивы, куда при каждом шаге цикла записываются новые значения зазора люфта и жёсткости силовой проводки. Анализ экспериментальных данных показал, что частота, при которой происходит фазовое запаздывание инерционной нагрузки, а коэффициент передачи при этом больше 1.5, составляет около 12-18 ГЦ, Поэтому здесь круговая частота составляет соответственно:

Исследование влияния инерционной нагрузки и жесткости крепления СГРМ на динамические характеристики РП ЛА

Анализ результатов показывает, что момент, возникающий вследствие работы устройства коррекции М[ больше г/д момента обратной струи М2, что позволит снизить итоговый момент г/д воздействия и снизить зону нечувствительности при воздействии линейного ускорения. Геометрические размеры струйного каскада не изменились. Для того, чтобы устранить воздействие г/д момента обратной струи, необходимо выполнить отверстия каналов А и Б в диапазоне dK =1.5.„2 мм при расходе через каналы QK = 8..9 л/мин.

Подводя итоги по главе 3, можно выделить следующие выводы: при численном моделировании с помощью разработанной математической модели РП ЛА был выполнен анализ влияния некоторых факторов на показатели качества динамических характеристик, среди которых можно выделить перерегулирование, время регулирования, максимальное перемещение поршня и инерционной нагрузки и др. Анализ позволил выявить степень влияния на характеристики РП таких факторов как люфт в силовой проводке, гистерезис в характеристике управления, нежёсткость силовой проводки и др. Анализ результатов численного моделирования показал, что при изменении жёсткости силовой проводки с, =10 ..106 Н/м величина перерегулирования уменьшается на 50%, а время регулирования tp при жёсткости меньше, чем сх = 106 Н/м, превышает допустимые значения (7Р 0.6..0.7 с). Следовательно, для рассматриваемого РП ЛА с однокаскадной СГРМ не допускается значение жёсткости силовой проводки менее с, =106 Н/м. Анализ результатов численного моделирования выявил значительное влияние эмпирического коэффициента магнитного гистерезиса Р на величину перерегулирования а. Когда величина Р меньше чем Р = 840Н/(Ам), величина перерегулирования достигает 100%), что недопустимо для РП ЛА. В результате проведённых исследований был выявлен диапазон 3 (1500 Н/(Ам) - 2000 Н/(Ам)). с целью определения г/д момента, который отрицательно влияет на характеристику управления, было выполнено имитационное моделирование струйного гидроусилителя в пакете Ansys CFX. В результате проведённых исследований была получена зависимость изменения г/д момента от перемещения струйной трубки для однокаскадной РМ, а также было проведено исследование по влиянию г/д момента на струйную трубку на динамические характеристики. Изменение г/д момента обратной струи происходит не пропорционально смещению струйной трубки РМ. При отсутствии г/д воздействия обратной струи на струйную трубку при частоте колебаний 15 Гц наблюдается устойчивая работа РП ЛА. В данном случае коэффициент передачи составляет меньше 1.5 (у 1.5). В случае г/д воздействия запаздывание инерционной нагрузки относительно поршня ГЦ РМ происходит при значениях с, = 6 107 Н/м и А = 1.2 10-4 м. Для снижения г/д момента обратной струи была разработана функциональная схема СГУ, доработанная на основе существующего изобретения, которая позволяет компенсировать г/д момент, действующий на струйную трубку, и уменьшить зону нечувствительности.

РП различных типов (электрические, гидравлические, пневматические, механические), а также устройства, созданные на их основе, нашли широкое распространение в самых различных областях техники. Любое автоматическое или дистанционно управляемое устройство, начиная от станков или манипуляторов и заканчивая сложными движущимися в неоднородной нестационарной среде объектами (танками, самолетами, кораблями и пр.), обязательно оснащается РП. К особому классу относятся РП для ЛА. Такие РП, создававшиеся в ОАО «ГРЦ им. академика В.П. Макеева», должны были обладать высокими заданными характеристиками и при этом удовлетворять жестким ограничениям по габаритам и массе, иметь высокую надежность, обеспечивать управление ракетой при подводном старте. Кроме основных требований, к системе управления вектором тяги-предъявляются и дополнительные требования: обеспечение необходимых управляющих усилий на активном участке траектории полёта; обеспечение наибольшей эффективности органа управления во всем диапазоне его рабочих параметров; наименьшие потери осевой тяги двигателя при работе органа управления; характеристики органа управления должны быть стабильны в течение всего времени работы ракетного двигателя.

Проектирование органов управления вектором тяги ракетного двигателя неразрывно связано с определением нагрузок, действующих на ПУС. Задача определения газодинамических сил, действующих на определённые элементы конструкции ассиметричных неподвижных сопел при симметричном течении потока по соплу, не представляет особенных трудностей и решается расчётом распределения давления по длине соплового тракта и последующим численным интегрированием сил давления в основном направлении.

Отсутствие надёжных методов расчёта силовых характеристик органов управления вектором тяги РД, учитывающих особенности изменения полётных условий при отработке программ полёта ракеты, выдвигают на первое место экспериментальные методы определения этих характеристик в наземных условиях. При этом стендовые испытания органов управления вектором тяги имеют свои особенности для каждого конкретного органа управления.

Дегтярев, Константин Юрьевич

Введение.

Глава 1. Аналитический обзор РП ЛА.

1.1 Состояние и перспективы развития РП ЛА.

1.2 Анализ конструктивно-компоновочных схем РП.

1.3 Анализ математических моделей электрогидравлических РП.

1.4 Актуальность исследования, цель и задачи работы.

Глава 2. Математическая модель РП с СГРМ.

2.1 Особенности математического моделирования СГРМ.

2.2 Влияние основных нелинейностей ЭГУ на характеристики РМ.

2.3 Нелинейная математическая модель РП.

2.4 Анализ результатов численного моделирования РП.

Глава 3. Повышение качества динамических характеристик системы рулевой привод-орган управления.93

3.1 Особенности эксплуатации РП и определение факторов, влияющих на показатели качества работы.

3.2 Имитационное моделирование СГУ в пакете Ansys CFX.Ill

3.3 Влияние жёсткости силовой проводки на характеристики РП.

Глава 4. Экспериментальные исследования РП ЛА.

4.1 Экспериментальный стенд для исследования РП ЛА.

4.2 Исследование влияния инерционной нагрузки и жесткости крепления СГРМ на динамические характеристики РП ЛА.

4.3 Методика расчёта РП с использованием имитационного моделирования.

4.4 Сравнительный анализ результатов численного моделирования и экспериментальных исследований РП ЛА.

Рекомендованный список диссертаций

  • Методологические основы совершенствования проектирования струйных гидравлических рулевых машин 2010 год, доктор технических наук Месропян, Арсен Владимирович

  • Струйные гидравлические рулевые машины с устройствами коррекции 2006 год, кандидат технических наук Арефьев, Константин Валерьевич

  • Методика расчета струйно-кавитационной гидравлической рулевой машины с использованием методов математического и физического моделирования 2010 год, кандидат технических наук Целищев, Дмитрий Владимирович

  • Идентификация струйных гидравлических рулевых машин 2000 год, кандидат технических наук Месропян, Арсен Владимирович

  • Моделирование и оптимизация гидромеханических систем мобильных машин и технологического оборудования 2008 год, доктор технических наук Рыбак, Александр Тимофеевич

Введение диссертации (часть автореферата) на тему «Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования»

Усовершенствование летательных аппаратов (JIA) влечёт за собой повышение требований по надёжности, быстродействию и долговечности рулевых приводов (РП), работающих в жёстких условиях эксплуатации. Научные и производственные организации как за рубежом, так и в отечественной промышленности ведут исследования по совершенствованию РП и устройств, удовлетворяющих условиям их работы на JIA.

РП JIA представляет собой набор электрогидравлических и механических устройств, позволяющих с высоким быстродействием (время выхода на режим составляет менее 0.6 с.) и точностью (величина перерегулирования составляет не более 10%) развивать требуемые характеристики. Функционирование РП J1A происходит в достаточно сложных условиях эксплуатации: воздействие вибрационных нагрузок, резкие воздействия при отстыковке ступеней ракеты, нелинейные характеристики сил трения тяг и качалок и сил инерции поворотного управляющего сопла (ПУС) с постоянно изменяющимся шарнирным моментом, сложные климатические условия и проблемы длительного хранения.

Максимально возможные тактико-технические характеристики беспилотных JIA достигаются, в том числе, благодаря многочисленным конструкторским и исследовательским работам, к которым можно отнести проведение стендовых испытаний и имитационное моделирование РП. Имитационное моделирование РП с применением современных пакетов математического моделирования и C/iD-проектирования позволяет снизить временные и финансовые затраты при разработке и последующей доводке РП беспилотных JIA, исключая метод проб и ошибок. Проведение экспериментальных исследований позволяет выполнить анализ соответствия результатов численного моделирования на адекватность реальному объекту.

В данной работе разработана имитационная модель РП JIA по результатам обработки и обобщения экспериментальных данных, полученных в ОАО «Государственный ракетный центр им. академика В.П. Макеева» и в учебно-научном инновационном центре «Гидропневмоавтоматика» на кафедре прикладной гидромеханики Уфимского государственного авиационного технического университета.

Цель и задачи работы

Улучшение динамических характеристик рулевого привода летательного аппарата на основе имитационного моделирования.

1. Разработка математической модели РП и анализ результатов численного моделирования;

2. Проведение экспериментальных исследований РП и сравнение их результатов с результатами численного моделирования;

4. Разработка методики расчёта с применением имитационной модели РП ЛА.

Методы исследования базируются на фундаментальных методах математического моделирования физических процессов, происходящих в РП JIA в процессе эксплуатации, методах статистического анализа экспериментальных характеристик РП и методах вычислительного эксперимента.

Научная новизна основных результатов работы

Впервые в математической модели РП JIA со струйным гидравлическим усилителем (СГУ) предложено использовать нелинейную модель люфта в механической передаче и эмпирическую модель гистерезиса характеристики управления электромеханического преобразователя, что позволило повысить достоверность результатов численного моделирования.

Впервые была решена обратная задача по влиянию нежёсткости силовой проводки на изменение гидродинамического момента обратных струй, действующих на струйную трубку, вследствие чего уменьшается зона устойчивости РП. В результате проведённых исследований были получены рекомендации по снижению гидродинамического момента обратной струи.

Впервые был определён диапазон изменения коэффициента передачи РП ДА, при котором наблюдается его устойчивая работа. Анализ результатов численного моделирования и результатов экспериментальных исследований позволили выявить зону устойчивости РП ДА как функцию от жёсткости силовой проводки и параметров РМ.

Практическая значимость заключается в том, что разработанная методика расчёта РП ЛА позволяет исследовать устойчивость, точность и быстродействие с учётом действующих на него эксплуатационных нагрузок. Комплекс прикладных программ, выполненных в математическом пакете, позволяет провести численное исследование имитационной модели рулевого привода и сравнить полученные результаты с экспериментальными данными. На защиту выносятся

1. Математическая модель РП J1A;

2. Результаты численного исследования имитационной модели РП JIA;

3. Результаты экспериментальных исследований РП JIA;

4. Новая схема струйного гидравлического распределителя (СГР), позволяющая увеличить надёжность и быстродействие РП ЛА за счёт снижения гидродинамического воздействия обратной струи на струйную трубку.

Апробация работы

Основные теоретические положения и практические результаты работы докладывались и обсуждались на всероссийской молодёжной научнотехнической конференции «Проблемы современного машиностроения» (г. Уфа 2004 г.), на международной конференции «Глобальный научный потенциал» (г. Тамбов 2006 г.), на Российской научно-технической конференции, посвященной 80-летию со дня рождения чл.-кор. РАН, профессора P.P. Мавлютова «Мавлютовские чтения» (г. Уфа 2006 г.), на конкурсе молодых специалистов авиационно-космической отрасли (Москва, ТПП РФ, комитет по развитию авиационно-космической техники, 2008).

Основанием для выполнения работы является план исследований госбюджетной НИР «Исследование теплофизических и гидродинамических процессов и разработка теории перспективных энергонапряженных двигателей и энергетических установок» (2008-2009 гг.), № 01200802934, Государственные контракты № П317 от 28.07.2009 «Разработка методов расчета и совершенствование рулевых приводов ракетных двигателей» и № П934 от 20.08.2009* «Электрогидравлическая система управления регулируемой двигательной установкой твёрдого топлива многократного включения» по направлению «Ракетостроение» федеральной целевой1 программы «Научные и педагогические кадры инновационной России» на 2009-2013 годы.

Публикации

Основные результаты исследований по теме диссертации представлены в 16 публикациях, в том числе в 3 статьях в рекомендованных ВАК изданиях. представлен анализ опубликованных работ по исследованию РП JIA, методов их расчёта и проектирования.

Рассматриваются опубликованные теоретические исследования и экспериментальные исследования авторов А.И: Баженова, Н.С. Гамынина, С.А. Ермакова, И.С. Шумилова, В.М. Фомичёва, В.А. Корнилова,. В.В. Малышева, В.А. Полковникова, В.А. Чащина. Анализ результатов исследований позволил доработать линейную математическую модель РМ, которая используется в РП J1A. На отечественных летательных аппаратах третьего поколения в состав РП входят РМ, разработанные в ОАО «Государственный ракетный центр им. академика В.П. Макеева». Разработка и испытания РП, проведённые специалистами ракетного центра, подтвердили, что РМ, отвечающей всем параметрам работы, является струйная гидравлическая рулевая машина (СГРМ).

Научно-технический обзор исследований по РП И.С. Шумилова, Д.Н. Попова, В.Ф. Казмиренко, В.И. Гониодского, А.С. Кочергина, Н.Г. Сосновского, М.В. Сиухина, В.Я. Бочарова позволил разработать методику расчёта и методику имитационного моделирования РП JIA. Представленные частотные характеристики РП и зависимости, которые учитывают жёсткость силовой проводки, жёсткость крепления гидроцилиндра, переменный модуль объёмной упругости рабочей жидкости, позволили доработать линейную математическую модель РП.

На протяжении развития военной авиации колоссальную роль в обеспечении надёжности, долговечности и.быстродействия оказали исследования, основанные на инженерных методах. В работах таких авторов, как В.М. Апасенко, Р.А. Рухадзе, В.И. Варфоломеев, М.И. Копытов, И.М. Гладков, И.Х. Фархутдинов, представлены различные конструктивные схемы РП, каждая из которых обладает своими преимуществами и недостатками. Конструктивные схемы позволяют определять кинематическую схему и расчётную схему РП.

В работах учёных кафедры «Прикладная гидромеханика» Уфимского государственного авиационного технического университета таких авторов, как Э.Г. Гимранов, В.А. Целищев, Р.А. Сунарчин, А.В. Месропян, A.M. Русак, а также в трудах зарубежных авторов: М. Nordin, Gutman Per-Olof, Hong-guang Li, Guang Meng, F. Ikhouane, J. E. Hurtado, J. Rodellar разработаны нелинейные математические модели электрогидравлических и механических устройств, работающих в жёстких эксплуатационных условиях.

Проведённый аналитический обзор показывает, что зачастую метод проб и ошибок при проектировании РП JIA является не только одним из самых эффективных методов, но и дорогостоящим методом, а линейные математические модели не адекватно описывают реальный объект, особенно при нагруженном режиме работы РП. Разработанные нелинейные математические модели позволяют приблизить результаты численного моделирования к физическим процессам, которые протекают во время эксплуатации РП JIA.

Во второй главе представлена математическая модель РП JIA. РП с СГРМ, который используется в настоящее время в ракетных двигателях JIA, отвечает всем требованиям по скоростным и силовым характеристикам. При работе РП JIA, включающие в свой состав СГРМ, протекают сложные физические процессы. Так, в струйном каскаде возникают сложные гидродинамические процессы, которые приводят к эжекции рабочей жидкости, к негативному воздействию гидродинамической обратной струи, к гистерезису в характеристике управления «ЭМП - струйная трубка» и др. В механической передаче РП можно выделить такие нелинейности как люфт, сила сухого трения, нежёсткость силовой проводки, которые отрицательно влияют на показатели динамических характеристик (точность, устойчивость и управляемость). Разработанная математическая модель РП JIA при численном моделировании позволяет получать результаты с высокой степенью адекватности реальному объекту.

В третьей главе представлены вопросы повышения качества динамических характеристик РП JIA. С помощью численного моделирования разработанной" математической модели РП" JIA можно выполнить анализ влияния определённых параметров, к которым можно отнести инерционную нагрузку, жёсткость силовой проводки, величину зазора люфта в механической передаче, гистерезис в характеристики управления «ЭМП - струйная трубка» и др. При этом рассматриваются показатели качества динамических характеристик: перерегулирование, время регулирования, время достижения первого максимума и амплитуда колебаний.

Использование современных пакетов Ansys CFX и Solid Works позволяет проводить имитационное моделирование РП, используя при этом метод конечных элементов, основную техническую базу по используемым материалам в современном машиностроении и математическую модель течения несжимаемой жидкости в проточной части СГРМ. Приведены результаты анализа теоретических и экспериментальных исследований и предложена функциональная схема СГРМ, позволяющая уменьшить зону нечувствительности в характеристике управления за счёт снижения гидродинамического воздействия обратной струи на струйную трубку.

В четвёртой главе представлен анализ результатов теоретических и экспериментальных исследований РП JIA. Для проведения экспериментальных исследований в ходе инновационного проекта в результате совместной деятельности УГАТУ и ОАО «ГРЦ им. академика В.П. Макеева» был разработан стенд по исследованию статических и динамических характеристик РП JIA. Стенд позволяет получать данные таких характеристик как расходно-перепадная характеристика СГРМ, перемещение струйной трубки, поршня РМ и инерционной нагрузки в режиме реального времени, а также частотных характеристик при различных условиях работы РП. В результате доработки математической модели погрешность расчётов численного моделирования и экспериментальных исследований составляет не больше 5%, что приемлемо для инженерной методики расчёта РП JIA.

Работа выполнена под руководством д.т.н., профессора В.А. Целищева и к.т.н., доцента А.В. Месропяна. Результаты, изложенные в данной работе и выносимые на защиту, получены лично автором диссертации.

Похожие диссертационные работы по специальности «Гидравлические машины и гидропневмоагрегаты», 05.04.13 шифр ВАК

  • Методы расчета газотермодинамики сверхзвуковых турбулентных затопленных струй и их взаимодействия с преградой 2009 год, кандидат физико-математических наук Сафронов, Александр Викторович

  • Модернизация двухдроссельного электрогидравлического усилителя для системы управления вектором тяги 2010 год, кандидат технических наук Белоногов, Олег Борисович

  • Особенности гидродинамики проточной части гидравлических струйных усилителей и их влияние на выходные характеристики 1984 год, кандидат технических наук Бадах, Валерий Николаевич

  • Использование вибрационных испытаний в контроле технического состояния самолётов 2009 год, кандидат технических наук Бобрышев, Александр Петрович

  • Прогнозирование параметров низкочастотного гидроакустического излучателя 1999 год, кандидат технических наук Квашнин, Александр Иванович

Заключение диссертации по теме «Гидравлические машины и гидропневмоагрегаты», Галлямов, Шамиль Рашитович

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

РП JIA постоянно совершенствуются по конструкции и функциональным возможностям. Усовершенствование JIA ведёт за собой повышение требований по надёжности, быстродействию и долговечности РП, находящихся в жёстких условиях эксплуатации. Снижение себестоимости при разработке и последующей доводке до требуемых характеристик РП JIA достигается использованием современных средств автоматизированного проектирования и моделирования, с применением многочисленных исследований по данной тематике. Работа РП происходит в достаточно сложных условиях: воздействие вибрационных нагрузок, резкие воздействия статической нагрузки при отстыковки ступеней ракеты, воздействие сил трения тяг и качалок и сил инерции ПУС с постоянно изменяющимся шарнирным моментом. Поэтому особое внимание, при его проектировании" уделяется проектированию жёсткости силовой проводки, проектированию РМ и проведению испытаний РП с максимально приближенными имитационными условиями эксплуатации. Жёсткость силовой проводки РП значительно влияет на его характеристики.

На сегодняшний день существуют различные методики расчёта и проектирования РП JIA, которые основаны на численном решении линейных и нелинейных уравнений, описывающих различные физические процессы. Необходимо использовать такую методику при расчёте РП, которая позволяет учитывать все возможные явления, протекающие во время эксплуатации РП. Такими явлениями могут являться люфт в механической проводке, зона нечувствительности в характеристике управления, нежёсткость крепления корпуса РМ, нежёсткость силовой проводки РП JIA, гидродинамическое воздействие на подвижные элементы струйного каскада и др.

Для проведения численных экспериментов РП ЛА была разработана математическая модель, которая позволяет проводить численные эксперименты РП на начальном этапе разработки. В отличие от существующих математических моделей в разработанной математической модели РП ЛА дополнительно были учтены нелинейности, которые существенно влияют на его характеристики. К таким нелинейностям относятся люфт в механической передаче, гистерезис в характеристике управления ЭМП СГРМ, зависимость гидродинамического момента обратной струи от перемещения струйной трубки, действующего на струйную трубку СГРМ.

При численном моделировании с помощью разработанной математической модели РП ЛА был выполнен анализ влияния некоторых факторов на показатели качества динамических характеристик, среди которых можно выделить перерегулирование, время регулирования, максимальное перемещение поршня и инерционной нагрузки и др. Исследования показали, что при изменении жёсткости силовой проводки с, =104.106 Н/м величина перерегулирования уменьшается на 50%, а время регулирования tp при жёсткости меньше чем с, = 106 Н/м превышает допустимые значения (tp < 0.6.0.7 с). Следовательно, для рассматриваемого РП ЛА с однокаскадной СГРМ не допускается, чтобы жёсткость силовой проводки была меньше чем с. = 106 Н/м. Анализ результатов численного моделирования выявил значительное влияние эмпирического коэффициента магнитного гистерезиса Р на величину перерегулирования о. Коэффициент р определяет величину ширины петли гистерезиса. Так в случае, когда выполняется условие Р<840Н/(Ам), величина перерегулирования а достигает 100%, что не допустимо для РП ЛА. В результате проведённых исследований было выявлено, что данного РП JIA величина (3 может изменяться в пределах 1500 Н/(Ам) - 2000 НУ(Ам).

При исследовании характеристик РП JIA была решена обратная задача о влиянии нежёсткости силовой проводки РП на изменение физических процессов, протекающих при истечении высоконапорной струи из конусного насадка СГУ. При изменении жёсткости силовой проводки РП возникает пульсация давлений в полостях ГЦ РМ, что приводит к изменению г/д момента, действующего на струйную трубку.

С целью определения г/д момента, который отрицательно влияет на характеристику управления, было выполнено имитационное моделирование СГУ в пакете Ansys CFX. В результате проведённых исследований была получена зависимость изменения г/д момента от перемещения струйной трубки для однокаскадной РМ, а также было проведено исследование по влиянию г/д. момента на струйную трубку на динамические характеристики. Изменение г/д момента обратной струи происходит не пропорционально смещению струйной трубки РМ. При отсутствии г/д воздействия обратной струи на струйную трубку при частоте колебаний 15 Гц наблюдается устойчивая работа РП JIA. В данном случае коэффициент передачи РП составляет меньше 1.5 (у <1.5). В случае г/д воздействия запаздывание инерционной нагрузки относительно поршня ГЦ РМ происходит при значениях сх = 6 107 Н/м и Л = 1.2 10-4 м. С целью снижения г/д момента обратной струи была разработана функциональная схема СГУ, доработанная на основе существующего изобретения, которая позволяет компенсировать г/д момент, действующий на струйную трубку, и уменьшить зону нечувствительности.

В ходе совместной работы сотрудников ОАО «ГРЦ им. В.П. Макеева» и сотрудников кафедры прикладной гидромеханики УГАТУ был разработан экспериментальный стенд для исследования статических и динамических характеристик РП JIA. Экспериментальный стенд позволяет проводить исследовании с имитацией постоянной позиционной нагрузки, которая может изменяться от 0 до 5000 Н и инерционной нагрузки, которая может иметь значения 0, 45 и 90 кг. Разработанная математическая модель РП JIA адекватна реальному объекту, так как погрешность сравнения результатов численного моделирования и результатов экспериментальных исследований составляет не больше 5%;

При анализе результатов численного и экспериментального исследований были получены такие характеристики как расходно-перепадная характеристика РМ, характеристика зоны нечувствительности при воздействии на исполнительный механизм позиционной нагрузки и при её отсутствии, характеристика изменения коэффициента расхода при разных положениях струйной трубки, АФЧХ поршня РМ и инерционной нагрузки. Анализ сравнения результатов численного моделирования и результатов экспериментальных исследований позволил разработать методику расчёта РП с однокаскадной СГРМ. Разработанная методика позволяет получить характеристики при расчёте РП на начальном этапе проектирования. Разработчик может по выбору использовать разработанную математическую модель РП JIA: использовать её как чёрный ящик не изменяя структуру или вносить некоторые изменения при численном исследовании РП ЛА. Так, существует возможность вносить изменения в расходно-перепадную характеристику РМ, изменять используемые эмпирические коэффициенты, менять режим нагружения РП ЛА.

Список литературы диссертационного исследования кандидат технических наук Галлямов, Шамиль Рашитович, 2009 год

1. ANSYS CFX-Solver Theory Guide. ANSYS CFX Release И.О.© 1996-2006 AN SYS Europe, Ltd.;

2. F. Ikhonane, J. E. Hurtado, J. Rode liar. On the Hysteretic Bouc-Wen Model. Nonlinear Dynamics 42: 63-78, 2005;

3. F. Ikhouane, J. E. Hurtado, J. Rodellar. Variation of the hysteresis loop with the Bouc-Wen model parameters. Nonlinear Dyn 48:361-380,.2007;

4. Hong-guang Li, Guang Meng. Nonlinear dynamics of a SDOF oscillator with Bouc-Wen hysteresis. 2006 Elsevier Science Ltd: Chaos, Solitons and Fractals 337-343, 2002 (www.elsevier.com/locate/automatica);

5. M. Nordin, Per-Olof Gutman. Controlling mechanical systems with backlasha survey, wvw.elsevier.com/locate/automatica. 2002 r;

6. Nordin M., Gutman Per-Olof Controlling mechanical systems with backlasha survey. 2002 Elsevier Science Ltd: Automatica 1633 - 1649, 2002 (www. elsevier. com/locate/automatica);

7. R. V. Lapshin, "Analytical model for the approximation of hysteresis loop and its application to th"e scanning tunneling microscope", Review of Scientific Instruments, volume 66, number 9,pages 4718-4730, 1995;

8. Solid Works Flow Simulation 2009. Technical Reference, 2009.

9. Forsythe, G.E.; Malcolm, M.A.; and Moler, C.B. Computer Methods for Mathematical Computations. New Jersey: Prentice Hall, 1977;

10. Абаринова И.А., Пильгунов B.H. Испытания гидравлических устройств автоматики и приводов. М.; МГТУ, 1990г. п.л.;

11. Автоматизированное проектирование следящих приводов и их элементов/ Под ред. В.Ф. Казмиренко/ Энергоатомиздат,1984;

12. Андреев А.Б. Использование первичных элементов пакета ADAMS для создания виртуальных моделей механических систем и механизмов.

13. Часть I Метод, указан, для пользователей по КНИРС. 5,2 п.л. 2000г. М. МГТУ-ОАО Туполев;

14. Апасенко В.М., Рухадзе Р.А. Морские ракетно-ядерные системы вооружения (прошлое, настоящее, будущее). - М.: Муниципальное образование «Выхино-Жулебино», 2003.- 328 е.;

15. Бадягин А.А., Егер С.М., Мишин В.Ф., Склянский Ф.И., Фомин A.M. «Машиностроение», 1972, стр. 516;

16. Баженов А.И. Рулевые гидроприводы со струйно-дроссельным регулированием: Учебное пособие, Москва, МАИ, 2002;

17. Бесекерский В.А. Теория систем автоматического управления/ В.А. Бесекерский, Е.П. Попов. М.: «Профессия», 2004, 747 е.;

18. Боровин Т.К., Попов Д.Н., Хван B.JL Математическое моделирование и оптимизация гидросистем. М.; МГТУ, 1995г.; 5,25 п.л.;

19. Бочаров В.Я., Шумилов И.С. Системы управления самолётов. Энциклопедия «Машиностроение». - М.: Машиностроение, 2004 г. Том IV-21. Книга 2;

20. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов. 13-е изд., исправленное. - М.: Наука, Гл. ред. физ.-мат. лит., 1986. - 544 е.;

21. Варфоломеев В.И., Копытов М.И. Проектирование и испытания баллистических ракет. - М.: Воениздат, 1969. - 491 е.;

22. Веденский В.А., Казмиренко В.Ф., Лесков А.Г. Системы следящих приводов. Монография. М.: Энергоатомиздат, 1993 г. 18 п.л.;

23. Власов К.П. Теория автоматического управления/ К.П. Власов, А.С. Анашкин. С.-Сб.: Санкт-Петербургский горный институт, 2003, 103 е.;

24. Воронов А.А. Основы теории автоматического управления. М. - JL: Энергия, 1965, 4.1,423 е., 1966, 4.2, 372 е., 1970, Ч.З, 328 е.;

25. Волков В.Т., Ягодников Д.А. Исследование и стендовая отработка ракетных двигателей на твёрдом топливе. - М.: Изд.- во МГТУ им. Н.Э. Баумана, 2007. - 296 е.: ил.;

26. Высокоточные системы управления и приводы для вооружения и военной техники/ Под ред. СолунинаВ.Л. Изд-во МГТУ. М.1999. Гурский Б.Г., Казмиренко В.Ф., Лавров А.А. и др.;

27. Галлямов Ш.Р. Особенности проверки адекватности динамических характеристик струйных гидравлических рулевых машин. / Галлямов Ш.Р. // Наука-Производству. НИИТ. г. Уфа, 2007 г. С. 70-74.;

28. Галлямов Ш.Р., Месропян А.В. Математическое моделированиедвухкаскадного электрогидроусилителя / Галлямов Ш.Р., Месропян

29. А.В. // Проблемы современного машиностроения: Тезисы докладов всероссийской молодёжной научно-технической конференции 22-23 декабря 2004 г.- Уфа: УГАТУ, 2004. 180с. С.38;

30. Галлямов Ш.Р., Месропян А.В. Экспериментальные исследования рулевых машин / Галлямов Ш.Р., Месропян А.В. // Гидропневмоавтоматика и гидропривод. -2005 г: сборник научных трудов: в 2 т. Т1 .-Ковров: КГТА, 2006. -326 с. С. 212;

31. Галлямов Ш.Р., Петров П.В., Широкова К.А. Численное моделирование струйной гидравлической рулевой машины. / Галлямов Ш.Р., Петров П.В., Широкова К.А. // Наука-Производству. НИИТ, 2007 г. С. 60-70.;

32. Галлямов Ш.Р., Целищев В.А. Анализ рабочих процессов в высоконапорном струйном элементе с помощью программного комплекса FLOWVISION. / Галлямов Ш.Р., Целищев В.А. // Вопросы теории и расчёта тепловых двигателей, г. Уфа, 2008 г. с. 104-112.;

33. Галлямов Ш.Р., Широкова К.А. Использование идентификации при проектировании СГРМ. / Галлямов Ш.Р., Широкова К.А. // Глобальный научный потенциал. Заочная международная конференция: сб. тезисов докладов. Тамбов: ТГТУ; 2006. - 54 с.-56 е.;

34. Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В. Исследование гидравлического рулевого привода летательного аппарата/ Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В. // Вестник УГАТУ, Т.11, №2 (29) г. Уфа, 2008 г., стр. 56-74.;

35. Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В. Численное моделирование потоков в струйно-золотниковом гидроусилителе/ Галлямов Ш.Р., Широкова К.А., Целищев В.А., Целищев Д.В.// Вестник УГАТУ, Т.11, №2 (29) г. Уфа, 2008 г., стр. 5560;

36. Гамынин, Н.С. Динамика быстродействующего гидравлического привода: Н.С. Гамынин, Ю. К. Жданов, A.JI. Климашин.- М. : Машиностроение, 1979 .- 80с.;

37. Гидравлические приводы летательных аппаратов./ Н.С. Гамынин, В.И. Карев, A.M. Потапов, A.M. Селиванов - М.: Машиностроение, 1992, 368 е.;

38. Гимранов Э.Г., Русак A.M., Целищев В.А. Электрогидравлический следящий привод: Учебное пособие. Уфа: изд. Уфимского государственного авиационного технического университета, 1984. - 92 е.;

39. Гладков И.М., Лалабеков В.И., Мухаммедов B.C., Шмачков Е.А. Массовые характеристики исполнительных устройств систем управления баллистических твёрдотопливных ракет и космических летательных аппаратов. М.: НТЦ «Информатика», 1996. - 168 е.;

40. Гониодский В.И., Кочергин А.С., Шумилов И.С. Системы управления рулями самолета. Ч. 1. Структура систем управления рулями самолетов. М.; МГТУ, 1992г. 3,0 пл.;

41. Гониодский В.И., Склянский Ф.И., Шумилов И.С. Привод рулевых поверхностей самолётов.- М., Машиностроение, 1974. - 317 е.;

42. Гониодский В.И., Шумилов И.С. Характеристики гидромеханических систем управления современными самолетами. Учебное пособие по курсу "Гидромеханические системы управления самолетом". 2,25 п.л., изд-во МГТУ, 1999 г.;

43. Гребёнкин В.И., Кузнецов Н.П., Черепов В.И. Силовые характеристики маршевых твёрдотопливных двигательных установок и двигателей специального назначения. Ижевск: Изд.-во ИжГТУ, 2003. - 356 е.;

44. Густомясов А.Н., Маландин ПО. Построение диагностических моделей гидроприводов. Методические указания. М. МГТУ, 1993 г. 1,5 п.л.;

45. Дьяконов В.П. Maple 9 в математике, физике и образовании. М.: СОЛОН-Пресс. 2004. 688 стр.;

46. Ермаков С.А., Карев В.И., Селиванов A.M. Проектирование корректирующих устройств и электрогидравлических усилителей следящих гидроприводов ДА: Учебное пособие, Москва, МАИ, 1990;

47. Ермаков С.А., Константинов С.В., Редько П.Г. Резервирование систем рулевых приводов летательных аппаратов: Учебное пособие, Москва, МАИ, 2002;

48. Ерохин Б.Т. Теоретические основы проектирования РДТТ. - Машиностроение, 1982. - 206 е.;

49. Иващенко Н.Н. Автоматическое регулирование. Теория и элементы систем. М.: Машиностроение, 1973. 606с.;

50. Испытания жидкостных ракетных двигателей. Под ред. В.З. Левина. - М.: Машиностроение, 1981. 199 е.;

51. Исследование ракетных двигателей на жидком топливе. Под ред. В.А. Ильинского. М.: Машиностроение, 1985. - 208 е.;

52. Казмиренко В.Ф., Ковальчук А. К. Электрические машины и преобразователи сигналов для автоматизированных гидроприводов. Учебное пособие. М.: Радио и связь., 1998г, 5 п.л.;

53. Карпенко А.В., Уткин А.Ф., Попов А.Д. Отечественные стратегические ракетные комплексы. - СПб.: Невский бастион Гангут, 1999. - 288 е.;

54. Конструкция и отработка РДТТ/ A.M. Винницкий, В.Т. Волков, С.В. Холодилов; Под ред. A.M. Винницкого. М.: Машиностроение, 1980. -230 е.;

55. Конструкция ракетных двигателей на твёрдом топливе. Под общ. ред. чл. корр. Российской академии наук, д-ра технических наук, проф. JI.H. Лаврова-М.: Машиностроение, 1993. - 215 е.;

56. Копылов И.П. Электромеханические преобразователи энергии. - М.: Энергия, 1973. -400 е.;

57. Корнилов В.А. Газовые исполнительные устройства. Основы автоматики и привода летательных аппаратов: Учебное пособие, Москва, МАИ, 1991;

58. Корнилов В.А. Основы автоматики и привода летательных аппаратов: Учебное пособие, Москва, МАИ, 1991;

59. Краснов Н.Ф., Кошевой В.Н. Управление и стабилизация в аэродинамике: Учеб. пособие для втузов/Под ред. Н.Ф. Краснова. - М.: Высш. Школа, 1978. 480 е.;

60. М.А. Красносельский, А.В.Покровский. Системы с гистерезисом М., Наука, Главная редакция физико-математической литературы, 1983. -272 стр.;

61. Крымов Б.Г. Исполнительные устройства систем управления летательными аппаратами: Учеб. пособие для студентов высших технических учеб. заведений / Б.Г. Крымов, JT.B. Рабинович, В.Г. Стеблецов. М.: Машиностроение, 1987. - 264 е.: ил.;

62. Лукас В.А. Теория автоматического управления. М.: Недра, 1990. 416 е.;

63. Малышев В.В., Кочеткова В.И., Карп К.А. Системы управления ракет-носителей: Учебное пособие, Москва, МАИ, 2000;

64. Математические основы теории автоматического регулирования / под ред. Б.К. Чемоданова. М.: Высшая школа, 1971. 807 е.;

65. Месропян А.В., Целищев В.А. Расчёт статических характеристик струйных гидравлических рулевых машин: Учебное пособие/ А.В. Месропян, В.А. Целищев; Уфимский государственный авиационный технический университет. - Уфа, 2003. 76 е.;

66. Месропян А.В., Целищев В.А. Электрогидравлический следящий привод. Учебное пособие. Уфимский государственный авиационный технический университет. - Уфа: УГАТУ, 2004. - 65 е.;

67. Мирошник И.В. Теория автоматического управления. Нелинейные и оптимальные системы. СПб.: Питер, 2006. - 272 е.: ил.;

68. Михайлов B.C. Теория управления. Учебное пособие для ВУЗов. Киев: Высшая школа, 1988. 309с.;

69. Низкотемпературные твердотопливные газогенераторы: Методы расчёта рабочих процессов, экспериментальные исследования/ О.В. Валеева, С.Д. Ваулин, С.Г. Ковкин, В.И. Феофилактов - Миасс: Издательство ГРЦ «КБ имени академика В.П. Макеева», 1997. 268 е.: ил.

70. Николаев Ю.М., Соломонов Ю.С. Инженерное проектирование управляемых баллистических ракет с РДТТ. М.: Воениздат, 1979. - 240 е.;

71. Основы теории автоматического управления ракетными двигательными установками/ А.И. Бабкин, С.И. Белов, Н.Б. Рутовский и др. М.: Машиностроение, 1986. - 456 е.;

72. Петровичев В.И. Расчет не следящего гидропривода самолета: Учебное пособие. Москва, МАИ, 2001;

73. Полковников В.А Параметрический синтез исполнительных механизмов гидравлических приводов систем управления летательных аппаратов: Учебное пособие, Москва, МАИ, 2001;

74. Полковников В.А. Электрические, гидравлические и пневматические приводы летательных аппаратов и их предельные динамические возможности: Москва, МАИ, 2002;

75. Попов Д.Н. Динамика и регулирование гидропневмосистем. 4.2, Методические указания. М.; МВТУ, 1979г. п.л.;

76. Попов Д.Н. Механика гидро-и пневмоприводов. Учебник. М., Изд-во МГТУ им. Н.Э. Баумана, 2001г.,20 п.л.;

77. Попов Д.Н. Расчет и проектирование следящего электрогидропривода с дроссельным регулированием. М.; МГТУ, 1990г. 1,75 п.л.;

78. Попов Д.Н. Схемы и конструкции электрогидравлических приводов. Учебное пособие. М.; 1985г.2,25 п.л.;

79. Попов Д.Н., Сосновский Н.Г., Сиухин М.В. Экспериментальное определение характеристик гидравлических приводов. Изд-во МГТУ им.Н.Э.Баумана, 2002 г.;

80. Попов Е.П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1989. 496 е.;

81. Проектирование следящих систем с помощью ЭВМ/ Под ред. B.C. Медведева/ Верещагин А.Ф., Казмиренко В.Ф., Медведев B.C. и др. Машиностроение, 1979 г.;

82. Прочность, устойчивость, колебания. Справочник в трёх томах. Том 3. Под ред. д-ра техн. наук И.А. Биргера и чл.-корр. АН Я.Г. Пановко. Машиностроение, 1988 г.

83. Разинцев В.И. Электрогидравлические усилители мощности. - М.: Машиностроение, 1980. 120 е., ил.;

84. Рябинин М.В Гидравлический демпфер. Изобретение № 2000100564/28(000785) от 12.01.2000 г.;

85. Рябинин М.В, А.А. Головин, Ю.В. Костиков, А.Б. Красовский, В.А. Никоноров. Динамика механизмов. Уч. пособие по курсу "Теория механизмов и машин". Из-во МГТУ им. Н.Э.Баумана, 2001 г.;

86. Семенов С.Е. Электромеханические преобразователи электрогидравлических следящих приводов. МГТУ им. Н.Э.Баумана, 1998 г.;

87. Синюков A.M. и др. Баллистическая ракета на твёрдом топливе. - М.: Воениздат, 1972.-511 е.;

88. Сипайлов Г.С.,Лоос А.В. Математическое моделирование электрических машин. -М.: Высшая школа,1980. -176 е.;

89. Смирнова В.И. Основы проектирования и расчёта следящих систем: Учебник для техникумов/ В.И. Смирнова, Ю.А. Петров, В.И. Разинцев. М.: Машиностроение, 1983. - 295 е., ил.;

90. Соколов А.А., Башилов А.С. Гидрокомплекс орбитального корабля «Буран». Москва, МАИ, 2006;

91. Солодовников В.В. Основы теории и элементы систем автоматического регулирования / В.В. Солодовников, В.Н. Плотников, А.В. Яковлев. М.: Машиностроение, 1985. 536 е.;

92. Труды МВТУ 244. Исследование и расчет струйных элементов и цепей систем автоматического регулирования. М.; МГТУ, 1977г. п.л.;

93. Труды МВТУ №244. Исследование и расчет струйных элементов и цепей систем автоматического регулирования. М.; МВТУ, 1977г. п.л.;

94. Управление вектором тяги и теплообмен в ракетных двигателях на твёрдом топливе/Н.М. Беляев, В.М. Ковтуненко, Ф.И. Кондратенко и др.; под ред. В.М. Ковтуненко // М.: Машиностроение. 1968. - 198 е.;

95. Фахрутдинов И.Х. Ракетные двигатели твёрдого топлива. М.: Машиностроение, 1981. -223 е.;

96. Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твёрдого топлива: Учебник для машиностроительных вузов. - М.: Машиностроение, 1987. - 328 е.;

97. Филипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых знаний, 2001 -616с.: ил.;

98. Фомичев В.М., Жарков М.Н. Испытание электрогидравлического усилителя мощности. М.; МГТУ, 1992г. 2,0 п.л.;

99. Целищев В.А. Определение коэффициентов восстановления давления и расхода в струйной электрогидравлической рулевой машине//Сб. трудов VII Всероссийской НТК. ОКБ «Темп», 26-29 октября, 1998 г. - с. 57-61;

100. Целищев В.А., Русак A.M., Шараев В.А., Скорынин Ю.Н. и др. Струйные гидравлические рулевые машины. Уфа: УГАТУ, 2002. - 284 е.: ил.

101. Ш.Целищева А.Р., Целищев В.А. Выбор гидромеханических корректирующих устройств для электрогидравлического следящего привода со струйным гидроусилителем//У правление в сложных системах: Межвуз. науч. сб. Уфа, 1998;

102. Чащин В.А. Пневмопривод систем управления ЛА с дроссельным распределителем: Учебное пособие, Москва, МАИ, 1994;

103. Шумилов И.С., Гониодский В.И. Характеристики гидромеханических систем управления современных самолетов. Учебное пособие, М., МГТУ., 1996, 2 п.л.

104. Электромеханические преобразователи гидравлических и газовых приводов/Е.М. Решетников, Ю.А. Саблин, В.Е. Григорьев и др. М.: Машиностроение, 1982. - 144 е.;

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

2.5.1. Модель объекта управления.

Движение ЛА относительно продольной оси происходит под действием аэродинамического момента и описывается дифференциальным уравнением:

В этом уравнении:

Момент инерции относительно продольной оси;

Угловая скорость вращения относительно продольной оси;

М х – аэродинамический момент относительно продольной оси.

Величина М х определяется из соотношения

где: - скоростной напор,

S – площадь крыла,

l - размах крыла,

m x = m x (w x , d э ) – безразмерный коэффициент момента,

r - плотность воздуха,

V – скорость полета,

d э – отклонение элеронов.

Для получения линейной модели объекта управления прибегнем к стандартной процедуре линеаризации уравнения (2.1.) относительно установившегося значения w x * и d э *, которое будем считать невозмущенным, и которое удовлетворяет уравнению

. (2.2.)

При этом полагаем, что изменения высоты и скорости полета незначительно влияют на параметры углового движения, в силу чего вариации высоты и скорости при линеаризации не учитываются, и, соответственно, величина скоростного напора постоянна.

Приращение варьируемых параметров:

,

и уравнение (2.1.) для возмущенного движения:

С учетом соотношения (2.2.) получаем линеаризованное уравнение движения ЛА относительно продольной оси

(2.3.)

В аэродинамике летательных аппаратов приняты следующие обозначения:

где: , - безразмерные коэффициенты.

С учетом этих обозначений уравнение (2.3.) приобретает вид:

(2.4.)

Переходя к принятой в теории автоматического управления форме записи, получим:

(2.5)

Здесь следует заметить, что в силу нулевых значений установившегося движения величины приращений и в уравнении (2.4.) совпадают с самими значениями этих переменных.

Введем обозначения для динамических коэффициентов :

- коэффициент демпфирования;

- коэффициент эффективности элеронов.

В результате уравнение (2.5.) или математическая модель объекта управления в угловом движении относительно продольной оси представляется линейным дифференциальным уравнением

(2.6.)

.

Обозначим:

и получим в этих обозначениях математическую модель объекта управления в виде системы линейных дифференциальных уравнений:

которая приводится к одному линейному уравнению второго порядка

, (2.8.)

которому соответствует передаточная функция объекта управления

, (2.9)

в которой входным сигналом является отклонение элеронов d э , а выходным – угол крена, как это показано на рис. 2.8.


Рис. 2.8. Передаточная функция объекта управления

2.5.2. Математическая модель рулевого привода.

Математическая модель рулевого привода представляет собой интегрирующее звено с отрицательной об
ратной связью, структурная схема модели представлена на рис. 2.9.

Рис. 2.9. Структурная схема модели рулевого привода

Работа рулевого привода описывается дифференциальным уравнением:

, (2.10.)

а передаточная функция может быть получена из структурной схемы

, (2.11.)

2.5.3. Математическая модель измерительных устройств

а это означает, что измеренные значения угла крена и угловой скорости не отличаются от их истинных значений.

2.5.4. Закон управления.

Регулятор, представленный на функциональной схеме автопилота в канале крена (рис. 2.7.), представляет собой устройство, которое реализует закон управления, т.е. вырабатывает управляющий сигнал на вход рулевого привода s э в зависимости от значений угла крена g и угловой скорости . Этот объем информации о выходных переменных объекта регулирования позволяет применить ПД – регулятор (пропорционально-дифференциальный), передаточная функция которого

, (2.12.)

а формируемый им закон управления имеет вид

Коэффициенты и называются передаточными числами (соответственно по позиционному и демпфирующему сигналам или по свободному гироскопу и по демпфирующему гироскопу). Именно передаточные числа в рамках фиксированной конфигурации системы управления являются тем инструментом, с помощью которого можно добиться желаемого качества работы системы управления. Меняя величины передаточных чисел (или, другими словами, выполняя их настройку) можно улучшить работу системы управления, добиваясь желаемого качества ее работы.

2.5.5. Математическая модель контура

стабилизации ЛА в канале крена.

Разработанные в этом разделе (2.5.) математические модели отдельных элементов функциональной схемы контура стабилизации крена (рис. 2.7.) дают возможность построить математическую модель системы управления угловым движением ЛА в канале крена.

Эта математическая модель представлена на рис. 2.10. и её исследование является основной задачей курсовой работы