Мультивибратор устройство принцип работы схема применение. Мультивибратор на транзисторах

Статье рассматривался мультивибратор на элементах "НЕ" способный выдавать прямоугольные импульсы с крутыми фронтами и спадами. Прервать генерацию импульсов в мультивибраторе на элементах "НЕ" можно например убрав питание с микросхемы, это не самый лучший способ. Если вместо элементов "НЕ" использовать элементы "И-НЕ" то мультивибратор можно сделать управляемым через один из выводов какого либо элемента "И-НЕ" этого мультивибратора. Если управление мультивибратором не требуется то можно делать так ка на схеме:

Рисунок 1 - Мультивибратор на микросхеме CD4011


Между выводом 4 и землёй можно, кроме светодиода с резистором, подключать другие подходящие нагрузки. Изменять частоту импульсов можно изменением ёмкости C1 и сопротивления R1, скважность равна двум. Мультивибратор с запретом генерации можно сделать например так:


Рисунок 2 - Мультивибратор с запретом генерации


Если один из выводов одного из элементов "И-НЕ" распараллелить то при подаче на этот вывод логического нуля генерации не будет а при подаче логической единицы генерация будет. Мультивибратор с разрешением генерации можно сделать например так:

Рисунок 3 - Мультивибратор с разрешением генерации


Мультивибратор на элементах "И-НЕ" может выдавать импульсы с высокой частотой поэтому такие мультивибраторы можно использовать для генерации звуков (или даже радиосигналов):

Рисунок 4 - Мультивибратор с пьезодинамиком


Электромагнитный динамик вместо пьезодинамика в данную схему лучше не ставить т.к. у обмоток э лектромагнитных динамиков слишком низкие сопротивления для того чтобы микросхема смогла, без перегрева (и выхода из строя), пропустить достаточно большой ток. Работает данный мультивибратор аналогично тому как работает мультивибратор с элементами "НЕ":

Рисунок 5 - Принцип работы мультивибратора на логических элементах "НЕ"


Длительность импульса tи, период T и частота F рассчитываются также:


Где Uп-напряжение питания, U0- низкое напряжение на входе элемента "не" при котором на выходе этого элемента появляется высокое напряжение уровня логической единицы, U1- высокое напряжение на входе элемента "не" при котором на выходе этого элемента появляется низкое напряжение уровня логического нуля.

Сборка данных схем не должна вызывать больших трудностей.


Мультивибратор.

Первая схема - простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него.

На первом рисунке изображена его принципиальная схема.

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются.

Для сборки потребуется минимум деталей:

1. Резисторы 500 Ом - 2 штуки

2. Резисторы 10 кОм - 2 штуки

3. Конденсатор электролитический 47 мкФ на 16 вольт - 2 штуки

4. Транзистор КТ972А - 2 штуки

5. Светодиод - 2 штуки

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода.

Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивайте так, как показано на рисунках.

А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд..

Фотореле.

А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф. Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод - любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами.

На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.

При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:

Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально.

Усилитель мощности на микросхеме TDA1558Q.

Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера.

Для его сборки понадобится всего пять деталей:

1. Микросхема - TDA1558Q

2. Конденсатор 0.22 мкФ

3. Конденсатор 0.33 мкФ – 2 штуки

4. Электролитический конденсатор 6800 мкФ на 16 вольт

Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора.

Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля».

Совершенство достигнуто не тогда, когда нечего добавить,
а тогда, когда нечего убрать.
Антуан де Сент–Экзюпери



Многие радиолюбители, конечно же, сталкивались с технологией поверхностного монтажа печатных плат SMT (Surface mount technology), встречали элементы SMD (Surface mount device), монтируемые на поверхность и слышали о преимуществах поверхностного монтажа, который по праву называют четвертой революцией в электронной технике после изобретения лампы, транзистора и интегральной схемы.

Некоторые считают поверхностный монтаж трудно реализуемым в домашних условиях в силу малых размеров SMD элементов и… отсутствия отверстий под выводы деталей.
Отчасти так оно и есть, но при внимательном рассмотрении выясняется, что малые размеры элементов требуют просто аккуратности при монтаже, конечно при условии, что разговор идет о простых SMD компонентах, не требующих для установки специального оборудования. Отсутствие опорных точек, коими являются отверстия под выводы деталей, лишь создают иллюзию трудности выполнения рисунка печатной платы.

Нужна практика в создании простых конструкций на SMD элементах, чтобы приобрести навыки, уверенность в своих силах, убедиться в перспективности поверхностного монтажа для себя лично. Ведь процесс изготовления печатной платы упрощается (не нужно сверлить отверстия, формовать выводы деталей), а получаемый выигрыш в плотности монтажа заметен невооруженным глазом.

Основой наших конструкций является схема несимметричного мультивибратора на транзисторах различной структуры.

Соберем «мигалку» на светодиоде, которая будет служить талисманом, а также создадим задел для будущих конструкций, изготовив прототип популярной у радиолюбителей, но не совсем доступной микросхемы .

Несимметричный мультивибратор на транзисторах разной структуры

(рис. 1) является настоящим «бестселлером» в радиолюбительской литературе .


Рис. 1. Схема несимметричного мультивибратора


Подключая в схему те или иные внешние цепи, можно собрать не один десяток конструкций. Например, звуковой пробник, генератор для изучения азбуки Морзе, прибор для отпугивания москитов, основа одноголосого музыкального инструмента. А применение внешних датчиков или устройств управления в цепи базы транзистора VT1 позволяет получить сторожевое устройство, индикатор влажности, освещённости, температуры и многие другие конструкции.

--
Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Список источников

1. Мосягин В.В. Секреты радиолюбительского мастерства. – М.: СОЛОН-Пресс. – 2005, 216 с. (с. 47 – 64).
2. Шустов М.А. Практическая схемотехника. 450 полезных схем радиолюбителям. Книга 1. – М.: Альтекс-А, 2001. – 352 с.
3. Шустов М.А. Практическая схемотехника. Контроль и защита источников питания. Книга 4. – М.: Альтекс-А, 2002. – 176 с.
4. Низковольтная «мигалка». (За рубежом) // Радио, 1998, №6, с. 64.
5.
6.
7.
8. Шумейкер Ч. Любительские схемы контроля и сигнализации на ИС. – М:.Мир, 1989 (схема 46. Простой индикатор разряда батареи, с. 104; схема 47. Маркер фалиня (мигающий), с. 105).
9. Генератор на LM3909 // Радиосхема, 2008, №2.Специальность по диплому - радиоинженер, к.т.н.

Автор книг «Юному радиолюбителю для прочтения с паяльником», «Секреты радиолюбительского мастерства», соавтор серии книг «Для прочтения с паяльником» в издательстве «СОЛОН-Пресс», имею публикации в журналах «Радио», «Приборы и техника эксперимента» и др.

Читательское голосование

Статью одобрили 66 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Мультивибратор (от латинского много колеблю) - нелинейное устройство, преобразующее постоянное напряжение питания в энергию импульсов почти прямоугольной формы. В основе мультивибратора лежит усилитель с положительной обратной связью.

Различают мультивибраторы автоколебательные и ждущие. Рассмотрим первый тип.

На рис. 1 приведена обобщенная схема усилителя с обратными связями.

Схема содержит усилитель с комплексным коэффициентом усиления к=Ке-iк, цепь ООС с коэффициентом передачи m, и цепь ПОС с комплексным коэффициентом передачи В=е-i. Из теории генераторов известно, что для возникновения колебаний на какой-либо частоте необходимо что бы на ней выполнялось условие Вк>1. Импульсный периодический сигнал содержит совокупность частот, образующих линейчатый спектр (см.1-ю лекцию). Т.о. для генерации импульсов необходимо выполнения условия Вк>1не на одной частоте, а в широкой полосе частот. Причем, чем более короткий импульс и с более короткими фронтами сигнал требуется получить, для более широкой полосы частот требуется выполнения условия Вк>1. Приведенное условие распадается на два:

условие баланса амплитуд - модуль общего коэффициента передачи генератора должен превышать 1 в широком диапазоне частот - К>1;

условие баланса фаз - суммарный сдвиг фаз колебаний в замкнутом контуре генератора в том же диапазоне частот должен быть кратен 2 - к + =2n.

Качественно процесс скачкообразного роста напряжения происходит следующим образом. Пусть в некоторый момент времени в результате флюктуаций напряжение на входе генератора возросло на малую величину u. В результате выполнения обоих условий генерации на выходе устройства появится приращение напряжения: uвых=Вкuвх >uвх, которое передается на вход в фазе с исходным uвх. Соответственно это увеличение приведет к дальнейшему возрастанию выходного напряжения. Происходит лавинообразный процесс роста напряжения в широком диапазоне частот.

Задача построения практической схемы генератора импульсов сводится к подаче на вход широкополосного усилителя части выходного сигнала с разностью фаз =2. Поскольку один резистивный усилитель сдвигает фазу входного напряжения на 1800, то применяя два последовательно соединенных усилителя, можно удовлетворить условию баланса фаз. Условие баланса амплитуд будет выглядеть в этом случае следующим образом:

Одна из возможных схем, реализующий указанный метод, приведена на рис.2. Это схема автоколебательного мультивибратора с коллекторно-базовыми связями. В схеме используются два усилительных каскада. Выход одного усилителя связан со входом второго конденсатором С1, а выход последнего связан со входом первого - конденсатором С2.


Качественно работу мультивибратора рассмотрим с использованием временных диаграмм напряжений (эпюр), приведенных на рис. 3.

Пусть в момент времени t=t1 происходит переключение мультивибратора. Транзистор VT1 попадает в режим насыщения, а VT2 - в режим отсечки. С этого момента начинаются процессы перезарядки конденсаторов С1 и С2. До момента t1 конденсатор С2 был полностью разряжен, а С1 заряжен до напряжения питания Еп (полярность заряженных конденсаторов указана на рис.2). После отпирания VT1 начинается его зарядка от источника Еп через резистор Rк2 и базу отпертого транзистора VT1. Конденсатор заряжается практически до напряжения питания Еп с постоянной заряда

зар2 = С2Rк2

Поскольку С2 через открытый VT1 подсоединен параллельно VT2, то скорость его зарядки определяет скорость изменения выходного напряжения Uвых2.. Полагая процесс зарядки законченным когда Uвых2 = 0,9Uп, легко получить длительность

t2-t1= С2Rк2ln102,3С2Rк2

Одновременно зарядке С2 (начиная с момента t1) происходит перезарядка конденсатора С1. Его отрицательное напряжение, приложенное к базе VT2, поддерживает запертое состояние этого транзистора. Конденсатор С1 перезаряжается по цепи: Еп, резистор Rб2, С1, Э-К открытого транзистора VT1. корпус с постоянной времени

разр1 = С1Rб2

Так как Rб >>Rк, то и зар<<разр. Следовательно, С2 успевает зарядиться до Еп пока VT2 еще закрыт. Процесс перезарядки С1 заканчивается в момент времени t5, когда UC1=0 и начинает открываться VT2 (для простоты считаем, что VT2 открывается при Uбє=0). Можно показать, что длительность перезаряда С1 равна:

t3-t1 = 0,7C1Rб2

В момент времени t3 появляется коллекторный ток VT2, падает напряжение Uкэ2, что приводит к призакрыванию VT1 и, соответственно, к росту Uкэ1. Это приращение напряжение через С1 передается в базу VT2, что влечет дополнительное открытие VT2. Транзисторы переходят в активный режим, возникает лавинообразный процесс, в результате которого мультивибратор переходит в другое квазистационарное состояние: VT1 закрыт, VT2 - открыт. Длительность опрокидывания мультивибратора намного меньше всех других переходных процессов и ее можно считать равным нулю.

С момента t3 процессы в мультивибраторе пойдут аналогично описанному, следует лишь поменять местами индексы у элементов схемы.

Таким образом, длительность фронта импульса определяется процессами заряда конденсатора связи и численно равна:

Длительность нахождения мультивибратора в квазиустойчивом состоянии (длительность импульса и паузы) определяется процессом разряда конденсатора связи через базовый резистор и численно равна:

При симметричной схеме мультивибратора (Rк1 =Rк2 =Rк, Rб1 =Rб2 =Rб, С1=С2=С) длительность импульса равна длительности паузы, и период следования импульсов равен:

Т = и + п =1,4CRб

Сравнивая длительности импульса и фронта необходимо учесть, что Rб/Rк=h21э/s (h21э для современных транзисторов 100, а s2). Следовательно, длительность фронта всегда меньше длительности импульса.

Частота выходного напряжения симметричного мультивибратора не зависит от напряжения питания и определяется только параметрами схемы:

Для изменения длительности импульсов и периода их следования нужно варьировать величины Rб и С. Но возможности здесь невелики: пределы изменения Rб ограничены сбольшей стороны необходимостью сохранения открытого транзистора, с меньшей стороны - неглубокого насыщения. Изменять плавно величину С затруднительно даже в малых пределах.

Чтобы найти выход из затруднения обратимся к периоду времени t3-t1 на рис. 2. Из рисунка видно, что указанный интервал времени, а, следовательно, и длительность импульса можно регулировать изменяя наклон прямой разряда конденсатора. Этого можно добиться, подключая базовые резисторы не к источнику питания, а к дополнительному источнику напряжения Есм (см. рис. 4). Тогда конденсатор стремится перезарядиться не к Еп, а к Есм и крутизна экспоненты будет изменяться с изменением Есм.

Импульсы, генерируемые рассмотренными схемами, имеют большую длительность фронта. В ряде случаев эта величина становится неприемлемой. Для укорачивания ф в схему вводят отсекающие конденсаторы, как показано на рис.5. Конденсатор С2 заряжается в этой схеме не через Rз, а через Rд. Диод VD2, оставаясь закрытым, «отсекает» напряжение на С2 от выхода и напряжение на коллекторе возрастает практически одновременно с закрытием транзистора.

В мультивибраторах в качестве активного элемента можно использовать операционный усилитель. Автоколебательный мультивибратор на ОУ изображен на рис. 6.


ОУ охвачен двумя цепями ОС: положительной

и отрицательной

Хс/(Хс+R) = 1/(1+wRC).

Пусть генератор был включен в момент t0. На инвертирующем входе напряжение равно нулю, на неинвертирующем - равновероятно положительное или отрицательное. Для определенности возьмем положительное. За счет ПОС на выходе установится максимально возможное напряжение - Uвых m. Время установления этого выходного напряжения определяется частотными свойствами ОУ и можно положить его равным нулю. Начиная с момента t0 конденсатор С будет заряжаться с постоянной времени =RC. До момента времени t1 Uд = U+ - U- >0, и на выходе ОУ удерживается положительное Uвыхm. При t=t1 , когда Uд = U+ - U- = 0 выходное напряжение усилителя изменит свою полярность на - Uвых m. После момента t1 емкость С перезаряжается, стремясь к уровню - Uвых m. До момента t2 Uд = U+ - U- < 0, что обеспечивает квазиравновесное состояние системы, но уже с отрицательным выходным напряжением. Т.о. изменение знака Uвых происходит в моменты уравнивания входных напряжений на двух входах ОУ. Длительность квазиравновесного состояния системы определяется постоянной времени =RC, и период следования импульсов будет равен:

Т=2RCln(1+2R2/R1).

Мультивибратор, приведенный на рис.6 называется симметричным, т.к. времена положительного и отрицательного выходных напряжений равны.

Для получения несимметричного мультивибратора следует резистор в ООС заменить на схему, как показано на рис. 7. Разная длительность положительного и отрицательного импульсов обеспечена разными постоянными времени перезаряда емкостей:

R"C, - = R”C.

Мультивибратор на ОУ легко превратить в одновибратор или ждущий мультивибратор. Во-первых, в цепи ООС параллельно С подсоединим диод VD1, как показано на рис.8. Благодаря диоду схема имеет одно устойчивое состояние, когда напряжение на выходе отрицательно. Действительно, т.к. Uвых = - Uвых m, то диод открыт и напряжение на инвертирующем входе примерно равно нулю. В то время как напряжение на неинвертирующем входе равно

U+ =- Uвых m R2/(R1+R2)

и сохраняется устойчивое состояние схемы. Для генерации одного импульса в схему следует добавить цепь запуска, состоящую из диодаVD2, С1 и R3. Диод VD2 поддерживается в закрытом состоянии и может открыться только положительным входным импульсом, пришедшим на вход в момент времени t0. С открытием диода меняется знак и схема переходит в состояние с положительным напряжением на выходе. Uвых = Uвых m. После этого конденсатор С1 начинает заряжаться с постоянной времени =RC. В момент времени t1 напряжения на входя сравниваются. U- = U+ = Uвых m R2/(R1+R2) и =0. В следующий момент дифференциальный сигнал становится отрицательным и схема возвращается в устойчивое состояние. Эпюры приведены на рис. 9.

Применяются схемы ждущих мультивибраторов на дискретных и логических элементах.

Схема рассматриваемого мультивибратора аналогична рассмотренной ранее.

Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.

От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.

Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.

Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.

Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными .

На рисунке представлена схема симметричного мультивибратора.

В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (t и ) = t паузы (t п ). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.

Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:

Где f - частота в герцах (Гц), С - ёмкость в микрофарадах (мкФ) и R - сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.

Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.

Основными характеристиками импульсного сигнала принято считать следующие параметры:

    Частота . Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.

    Длительность импульса . Измеряется в долях секунды: мили, микро, нано, пико и так далее.

    Амплитуда . В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.

    Скважность . Отношение периода (Т) к длительности импульса (t ). Если длина импульса равна 0,5 периода, то скважность равна двум.

Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.

Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.

Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.

Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.

Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах .

При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.

Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.

Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.

Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.

Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром .

Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов , которым можно измерить ёмкость конденсатора.