Космические аппараты виды название назначение. Космические аппараты

Возможно, произнося без каких-либо пояснений мудрёные словечки, профессионалы-ракетчики (и причисляющиеся к ним) видят себя отдельной интеллектуальной кастой. Но как быть обычному человеку, который, интересуясь ракетами и космосом, пытается слёту овладеть статьёй, пересыпанной непонятными сокращениями? Что такое БОКЗ, СОТР или ДПК? Что такое «мятый газ» и почему ракета «ушла за бугор», а носитель и космический корабль — два совершенно разных изделия — носят одно имя «Союз»? Кстати, БОКЗ — это не бокс по-олбански, а блок определения координат звёзд (в просторечии — звёздный датчик), СОТР — не яростное сокращение выражения «в порошок сотру», а система обеспечения теплового режима , а ДПК — не мебельный «древесно-полимерный композит», а самый что ни на есть ракетный (и не только) дренажно-предохранительный клапан . Но что делать, если ни в сноске, ни в тексте нет никаких расшифровок? Это проблема… Причём не столько читателя, сколько «написанта» статьи: второй раз его читать не будут! Чтобы избежать сей горькой участи, мы взяли на себя скромный труд по составлению краткого словарика ракетно-космических терминов, сокращений и названий. Разумеется, он не претендует на полноту, а в каких-то местах — и на строгость формулировок. Но, мы надеемся, он поможет читателю, интересующемуся космонавтикой. И кроме того, словарик можно дополнять и уточнять бесконечно — ведь космос бесконечен!..

Apollo — американская программа высадки человека на Луну, которая включала также испытательные полёты астронавтов на трёхместном корабле по околоземной и окололунной орбите в 1968—1972 годах.

Ariane-5 — название европейской одноразовой ракеты-носителя тяжёлого класса, предназначенной для выведения полезных грузов на околоземные орбиты и отлётные траектории. C 4 июня 1996 года до 4 мая 2017 года выполнила 92 миссии, из них 88 — полностью успешно.

Atlas V — название серии американских одноразовых ракет-носителей среднего класса, созданных компанией Lockheed Martin. C 21 августа 2002 года до 18 апреля 2017 года выполнена 71 миссия, из них 70 — успешно. Используется преимущественно для запуска космических аппаратов по заказам американских правительственных ведомств.

ATV (Automated Tranfer Vehicle) — название европейского одноразового автоматического транспортного корабля, предназначенного для снабжения МКС грузами и совершавшего полёты в период с 2008 по 2014 год (выполнено пять миссий).

BE-4 (Blue Origin Engine) — мощный маршевый жидкостный ракетный двигатель тягой 250 тс на уровне моря, работающий на кислороде и метане и разрабатываемый с 2011 года компанией Blue Origin для установки на перспективных ракетах-носителях Vulcan и New Glenn. Позиционируется как замена российскому двигателю РД-180. Первые комплексные огневые испытания намечены на первое полугодие 2017 года.

CCP (Commercial Crew Program) — современная государственная американская коммерческая пилотируемая программа, проводимая NASA и способствующая доступу частных промышленных фирм к технологиям изучения и освоения космического пространства.

CNSA (China National Space Agency) — английская аббревиатура государственного агентства, осуществляющего координацию работ по изучению и освоению космического пространства в КНР.

CSA (Canadian Space Agency) — государственное агентство, осуществляющее координацию работ по изучению космоса в Канаде.

Cygnus — название американского одноразового автоматического транспортного корабля, созданного компанией Orbital для снабжения МКС запасами и грузами. С 18 сентября 2013 года по 18 апреля 2017 года выполнено восемь миссий, из них семь — успешно.

Delta IV — название серии американских одноразовых ракет-носителей среднего и тяжёлого классов, созданных компанией Boeing в рамках программы EELV. C 20 ноября 2002 года по 19 марта 2017 года проведено 35 миссий, из них 34 — успешно. В настоящее время используется исключительно для запуска космических аппаратов по заказам американских правительственных ведомств.

Dragon — название серии американских частично многоразовых транспортных кораблей, разрабатываемых частной компанией SpaceX по контракту с NASA в рамках программы CCP. Способен не только доставлять грузы на МКС, но и возвращать их обратно на Землю. С 8 декабря 2010 года по 19 февраля 2017 года запущено 12 беспилотных кораблей, из них 11 — успешно. Начало лётных испытаний пилотируемого варианта намечено на 2018 год.

Dream Chaser — название американского многоразового транспортного орбитального ракетоплана, разрабатываемого с 2004 года компанией Sierra Nevada для снабжения орбитальных станций запасами и грузами (а в будущем, в семиместном варианте, — и для смены экипажа). Начало лётных испытаний намечено на 2019 год.

EELV (Evolved Expendable Launch Vehicle) — программа эволюционного развития одноразовых ракет-носителей для использования (прежде всего) в интересах Министерства обороны США. В рамках программы, начатой в 1995 году, созданы носители семейств Delta IV и Atlas V; с 2015 года к ним присоединился Falcon 9.

EVA (Extra-Vehicular Activity) — английское название внекорабельной деятельности (ВКД) астронавтов (работы в открытом космосе или на поверхности Луны).

FAA (Federal Aviation Administration) — Федеральное управление гражданской авиации, регулирующее в США юридические вопросы коммерческих космических полётов.

Falcon 9 — название серии американских частично многоразовых носителей среднего класса, созданных частной компанией SpaceX. С 4 июня 2010 года по 1 мая 2017 года проведено 34 пуска ракет трёх модификаций, из них 31 — полностью успешный. До недавнего времени Falcon 9 служил как для выведения на орбиту беспилотных грузовых кораблей Dragon для снабжения МКС, так и для коммерческих пусков; сейчас включён в программу выведения на орбиту космических аппаратов по заказу американских правительственных ведомств.

Falcon Heavy — название американской частично многоразовой ракеты-носителя тяжёлого класса, разрабатываемой компанией SpaceX на основе ступеней носителя Falcon-9. Первый полёт запланирован на осень 2017 года.

Gemini — название второй американской пилотируемой космической программы, в ходе которой астронавты на двухместном корабле совершали околоземные полёты в 1965-1966 годах.

H-2A (H-2B) — варианты японской одноразовой ракеты-носителя среднего класса, предназначенной для выведения полезных грузов на околоземные орбиты и отлётные траектории. C 29 августа 2001 года по 17 марта 2017 года выполнено 33 пуска варианта H-2A (из них 32 успешных) и шесть пусков H-2B (все успешные).

HTV (H-2 Transfer Vehicle), он же «Коунотори», — название японского автоматического транспортного корабля, предназначенного для снабжения МКС грузами и совершающего полёты с 10 сентября 2009 года (выполнено шесть миссий, по плану осталось три).

JAXA (Japan Aerospace Exploration Agency) — агентство, осуществляющее координацию работ по исследованию космического пространства в Японии.

Mercury — название первой американской пилотируемой космической программы, в ходе которой астронавты на одноместном корабле совершали околоземные полёты в 1961-1963 годах.

NASA (National Aeronautics and Space Administration) — государственное управление, осуществляющее координацию работ по авиации и исследованиям космического пространства в США.

New Glenn — название частично многоразовой ракеты-носителя тяжёлого класса, разрабатываемой компанией Blue Origin для коммерческих запусков и использования в лунной транспортной системе. Анонсирована в сентябре 2016 года, первый пуск планируется на 2020-2021 годы.

Orion MPCV (Multi-Purpose Crew Vehicle) — название многофункциональных пилотируемых кораблей, разрабатываемых NASA в рамках программы Exploration и предназначенных для полётов астронавтов на МКС и за пределы низкой околоземной орбиты. Начало лётных испытаний намечено на 2019 год.

Skylab — название первой американской космической станции, на которой в 1973-1974 годах работали три экспедиции астронавтов.

SLS (Space Launch System) — название американского семейства ракет-носителей сверхтяжёлого класса, разрабатываемых NASA в рамках программы Exploration и предназначенных для запуска элементов космической инфраструктуры (включая пилотируемые корабли Orion) на отлётные траектории. Начало лётных испытаний намечено на 2019 год.

SpaceShipOne (SS1) — название экспериментального многоразового суборбитального ракетоплана, созданного фирмой Scaled Composites, который стал первым негосударственным пилотируемым аппаратом, преодолевшим линию Кармана и добравшимся до космоса. Теоретически должен был нести экипаж из трёх человек, фактически управлялся одним пилотом.

SpaceShipTwo (SS2) — название многоразового многоместного (два пилота и шесть пассажиров) суборбитального ракетоплана фирмы Virgin Galactic, предназначенного для осуществления коротких туристических путешествий в космос.

Space Shuttle, иначе STS (Space Transportation System) — серия американских многоразовых пилотируемых транспортных космических кораблей, созданных по заказу NASA и Министерства обороны по государственной программе и совершивших 135 миссий в околоземное космическое пространство в период с 1981 по 2011 год.

Starliner (CST-100) — название американского частично многоразового пилотируемого транспортного корабля, разрабатываемого компанией Boeing по контракту с NASA в рамках программы CCP. Начало лётных испытаний намечено на 2018 год.

ULA (United Launch Alliance) — «Объединённый пусковой альянс», совместное предприятие, созданное в 2006 году компаниями Lockheed Martin и Boeing для экономически эффективной эксплуатации ракет-носителей Delta IV и Atlas V.

Vega — название европейской ракеты-носителя лёгкого класса, разработанной в международной кооперации при решающем участии Италии (компания Avio) для выведения полезных грузов на околоземные орбиты и отлётные траектории. С 13 февраля 2012 года по 7 марта 2017 года выполнено девять миссий (все — успешно).

Vulcan — название перспективной американской ракеты, предназначенной для замены носителей Delta IV и Atlas V. Разрабатывается с 2014 года «Объединённым пусковым альянсом» ULA. Первый пуск планируется на 2019 год.

X-15 — американский экспериментальный ракетоплан, созданный фирмой North American по заказу NASA и Министерства обороны для изучения условий полёта на гиперзвуковых скоростях и входа в атмосферу крылатых аппаратов, оценки новых конструкторских решений, теплозащитных покрытий и психофизиологических аспектов управления в верхних слоях атмосферы. Построено три ракетоплана, которые в 1959—1968 годах совершили 191 полёт, поставив несколько мировых рекордов скорости и высоты (в том числе 22 августа 1963 года достигнута высота 107 906 м).

Абляция — процесс уноса массы с поверхности твёрдого тела потоком набегающего газа, сопровождаемый поглощением теплоты. Лежит в основе абляционной теплозащиты, предохраняя конструкцию от перегрева.

«Ангара» — название российского КРК, а также семейства одноразовых модульных ракет-носителей лёгкого, среднего и тяжёлого классов, предназначенных для выведения полезных грузов на околоземные орбиты и отлётные траектории. Первый пуск лёгкой ракеты «Ангара-1.2ПП» состоялся 9 июля 2014 года, первый пуск тяжёлого носителя «Ангара-А5» — 23 декабря 2014 года.

Апогей — наиболее удалённая от центра Земли точка орбиты спутника (естественного или искусственного).

Аэродинамическое качество — безразмерная величина, отношение подъёмной силы летательного аппарата к силе лобового сопротивления.

Баллистическая траектория — путь, по которому движется тело при отсутствии действия на него аэродинамических сил.

Баллистическая ракета — летательный аппарат, который после отключения двигателя и выхода за пределы плотных слоёв атмосферы летит по баллистической траектории.

«Восток» — название первого советского одноместного пилотируемого корабля, на котором космонавты совершали полёты в период с 1961 по 1963 год. Также — открытое наименование серии советских одноразовых ракет-носителей лёгкого класса, созданных на базе межконтинентальной баллистической ракеты Р-7 и использовавшихся в период с 1958 по 1991 год.

«Восход» — название многоместной модификации советского пилотируемого корабля «Восток», на которой космонавты совершили два полёта в 1964—1965 годах. Также — открытое наименование серии советских одноразовых ракет-носителей среднего класса, использовавшихся в период с 1963 по 1974 год.

Газовый ракетный двигатель (газовое сопло) — устройство, которое служит для преобразования в тягу потенциальной энергии сжатого рабочего тела (газа).

Гибридный ракетный двигатель (ГРД) — частный случай химического реактивного двигателя; устройство, использующее для создания тяги химическую энергию взаимодействия компонентов топлива, пребывающих в различном агрегатном состоянии (например, жидкий окислитель и твёрдое горючее). На таком принципе построены двигатели ракетопланов SpaceShipOne и SpaceShipTwo.

Гномон — астрономический инструмент в виде вертикальной стойки, позволяющий по наименьшей длине тени определить угловую высоту солнца на небе, а также направление истинного меридиана. Фотогномон с цветовой калибровочной шкалой служил для документирования образцов лунного грунта, собранного во время миссий Apollo.

ЕКА (Европейское космическое агентство) — организация, осуществляющая координацию деятельности европейских государств по изучению космического пространства.

Жидкостный ракетный двигатель (ЖРД) — частный случай химического реактивного двигателя; устройство, использующее для создания тяги химическую энергию взаимодействия жидких компонентов топлива, хранящихся на борту летательного аппарата.

Капсула — одно из названий бескрылого спускаемого аппарата искусственных спутников и космических кораблей.

Космический аппарат — общее название различных технических устройств, предназначенных для выполнения целевых задач в космическом пространстве.

Космический ракетный комплекс (КРК) — термин, характеризующий совокупность функционально связанных элементов (технического и стартового комплекса космодрома, измерительных средств космодрома, наземного комплекса управления космического аппарата, ракеты-носителя и разгонного блока), обеспечивающих выведение космического аппарата на целевую траекторию.

Линия Кармана — согласованная на международном уровне условная граница космоса, пролегающая на высоте 100 км (62 мили) над уровнем моря.

«Мир» — название модульной советской/российской орбитальной космической станции, которая летала в 1986-2001 годах, принимая многочисленные советские (российские) и международные экспедиции.

МКС (Международная космическая станция) — название пилотируемого комплекса, который был создан на околоземной орбите усилиями России, США, Европы, Японии и Канады для проведения научных исследований, связанных с условиями длительного пребывания человека в космическом пространстве. Англоязычная аббревиатура ISS (International Space Station).

Многоступенчатая (составная) ракета — устройство, у которого по мере израсходования топлива происходит последовательный сброс использованных и ненужных для дальнейшего полёта элементов конструкции (ступеней).

Мягкая посадка — касание космического аппарата поверхности планеты или другого небесного тела, при котором вертикальная скорость позволяет обеспечить сохранность конструкции и систем аппарата и/или комфортные условия для экипажа.

Наклонение орбиты — угол между плоскостью орбиты естественного или искусственного спутника и плоскостью экватора тела, вокруг которого обращается спутник.

Орбита — траектория (чаще всего эллиптическая), по которой одно тело (например, естественный спутник или космический аппарат) движется относительно центрального тела (Солнца, Земли, Луны и т.д.). В первом приближении околоземная орбита характеризуется такими элементами, как наклонение, высота перигея и апогея и период обращения.

Первая космическая скорость — наименьшая скорость, которую необходимо придать телу в горизонтальном направлении у поверхности планеты, чтобы оно вышло на круговую орбиту. Для Земли — примерно 7,9 км/с.

Перегрузка — векторная величина, отношение суммы силы тяги и/или аэродинамической силы к весу летательного аппарата.

Перигей — ближайшая к центру Земли точка орбиты спутника.

Период обращения — промежуток времени, в течение которого спутник совершает полный оборот вокруг центрального тела (Солнца, Земли, Луны и т. д.)

Пилотируемый транспортный корабль нового поколения (ПТК НП) «Федерация» — многоразовый четырёх-шестиместный корабль, разрабатываемый Ракетно-космической корпорацией «Энергия» для обеспечения доступа в космос с российский территории (с космодрома Восточный), доставки людей и грузов на орбитальные станции, полётов на полярную и экваториальную орбиту, исследования Луны и посадки на неё. Создаётся в рамках ФКП-2025, начало лётных испытаний намечено на 2021 год, первый пилотируемый полёт со стыковкой с МКС должен состояться в 2023 году.

«Прогресс» — название серии советских (российских) беспилотных автоматических кораблей для доставки топлива, грузов и припасов на космические станции «Салют», «Мир» и МКС. С 20 января 1978 года по 22 февраля 2017 года запущено 135 кораблей различных модификаций, из них 132 — успешно.

«Протон-М» — название российской одноразовой ракеты-носителя тяжёлого класса, предназначенной для выведения полезных грузов на околоземные орбиты и отлётные траектории. Создана на базе «Протона-К»; первый полёт данной модификации состоялся 7 апреля 2001 года. До 9 июня 2016 года выполнено 98 пусков, из них 9 полностью и 1 частично неудачных.

Разгонный блок (РБ), наиболее близкий по смыслу западный эквивалент — «верхняя ступень» (upper stage), — ступень ракеты-носителя, предназначенная для формирования целевой траектории космического аппарата. Примеры: Centaur (США), «Бриз-М», «Фрегат», ДМ (Россия).

Ракета-носитель — в настоящее время единственное средство выведения полезной нагрузки (спутника, зонда, космического корабля или автоматической станции) в космическое пространство.

Ракета-носитель сверхтяжёлого класса (РН СТК) — условное наименование российской опытно-конструкторской разработки, предназначенной для создания средства выведения элементов космической инфраструктуры (включая пилотируемые корабли) на отлётные траектории (к Луне и Марсу).

Различные предложения по созданию носителя сверхтяжёлого класса на базе модулей ракет «Ангара-А5В», «Энергия 1К» и «Союз-5». Графика В. Штанина

Ракетный двигатель твёрдого топлива (РДТТ) — частный случай химического реактивного двигателя; устройство, которое использует для создания тяги химическую энергию взаимодействия твёрдых компонентов топлива, хранящихся на борту летательного аппарата.

Ракетоплан — крылатый летательный аппарат (самолёт), использующий для разгона и/или полёта ракетный двигатель.

РД-180 — мощный маршевый жидкостный ракетный двигатель тягой 390 тс на уровне моря, работающий на кислороде и керосине. Создан российским НПО «Энергомаш» по заказу американской фирмы Pratt and Whitney для установки на носители семейства Atlas III и Atlas V. Серийно производится в России и поставляется в США с 1999 года.

Роскосмос — краткое название Федерального космического агентства (в период с 2004 по 2015 год, с 1 января 2016 года — госкорпорация «Роскосмос»), государственной организации, которая осуществляет координацию работ по изучению и освоению космического пространства в России.

«Салют» — название серии советских долговременных орбитальных станций, которые летали по околоземной орбите в период с 1971 по 1986 год, принимая советские экипажи и космонавтов из стран социалистического содружества (программа «Интеркосмос»), Франции и Индии.

«Союз» — название семейства советских (российских) многоместных пилотируемых кораблей для полётов по околоземной орбите. С 23 апреля 1967 года по 14 мая 1981 года 39 кораблей совершали полёт с экипажем на борту. Также — открытое название серии советских (российских) одноразовых ракет-носителей среднего класса, использовавшихся для запуска полезных нагрузок на околоземные орбиты с 1966 по 1976 год.

«Союз-ФГ» — название российской одноразовой ракеты-носителя среднего класса, которая с 2001 года доставляет корабли — пилотируемые (семейства «Союз») и автоматические («Прогресс») — на околоземную орбиту.

«Союз-2» — название семейства современных российских одноразовых ракет-носителей лёгкого и среднего класса, которые с 8 ноября 2004 года выводят различные полезные грузы на околоземные орбиты и отлётные траектории. В вариантах «Союз-ST» с 21 октября 2011 года запускается с европейского космодрома Куру во Французской Гвиане.

«Союз Т» — название транспортного варианта советского пилотируемого корабля «Союз», который с апреля 1978 года по март 1986 года совершил 15 пилотируемых полётов к орбитальным станциям «Салют» и «Мир».

«Союз ТМ» — название модифицированного варианта советского (российского) транспортного пилотируемого корабля «Союз», который с мая 1986 года по ноябрь 2002 года совершил 33 пилотируемых полёта к орбитальным станциям «Мир» и МКС.

«Союз ТМА» — название антропометрического варианта модификации российского транспортного корабля «Союз», созданного для расширения допустимого диапазона роста и веса членов экипажа. С октября 2002 года по ноябрь 2011 года совершил 22 пилотируемых полёта к МКС.

«Союз ТМА-М» — дальнейшая модернизация российского транспортного корабля «Союз ТМА», которая с октября 2010 года по март 2016 года выполнила 20 пилотируемых полётов к МКС.

«Союз МС» — окончательный вариант российского транспортного корабля «Союз», который совершил первую миссию к МКС 7 июля 2016 года.

Суборбитальный полёт — движение по баллистической траектории с кратковременным выходом в космическое пространство. При этом скорость полёта может быть как меньше, так и больше местной орбитальной (вспомним американский зонд Pioneer-3, имевший скорость выше первой космической, но всё равно упавший на Землю).

«Тяньгун» — название серии китайских орбитальных пилотируемых станций. Первая (лаборатория «Тяньгун-1») была запущена 29 сентября 2011 года.

«Шэньчжоу» — название серии современных китайских трёхместных пилотируемых космических кораблей для полётов по околоземной орбите. С 20 ноября 1999 года по 16 октября 2016 года запущено 11 кораблей, из них 7 — с космонавтами на борту.

Химический реактивный двигатель — устройство, в котором энергия химического взаимодействия компонентов топлива (окислителя и горючего) преобразуется в кинетическую энергию реактивной струи, создающей тягу.

Электрический ракетный двигатель (ЭРД) — устройство, в котором для создания тяги рабочее тело (обычно хранящееся на борту летательного аппарата) разгоняется с помощью внешнего подвода электрической энергии (нагрев и расширение в реактивном сопле либо ионизация и разгон заряженных частиц в электрическом (магнитном) поле).

Ионный электроракетный двигатель имеет малую тягу, но большую экономичность, обусловленную высокой скоростью истечения рабочего тела

Система аварийного спасения — совокупность устройств для спасения экипажа космического корабля в случае аварии ракеты-носителя, т. е. при возникновении ситуации, в которой невозможен вывод на целевую траекторию.

Скафандр — индивидуальный герметичный костюм, обеспечивающий условия для работы и жизнедеятельности космонавта в разрежённой атмосфере или в космическом пространстве. Различаются аварийно-спасательные и скафандры для внекорабельной деятельности.

Спускаемый (возвращаемый) аппарат — часть космического аппарата, предназначенная для спуска и посадки на поверхность Земли или другого небесного тела.

Специалисты группы поиска и спасения рассматривают спускаемый аппарат китайского зонда «Чанъэ-5-Т1», вернувшийся на Землю после облёта Луны. Фото CNSA

Тяга — реактивная сила, приводящая в движение летательный аппарат, на котором установлен ракетный двигатель.

Федеральная космическая программа (ФКП) — основной документ Российской Федерации, определяющий перечень основных задач в области гражданской космической деятельности и их финансирование. Составляется на десятилетие. Текущая ФКП-2025 действует в период с 2016 по 2025 год.

«Феникс» — название опытно-конструкторской работы в рамках ФКП-2025 по созданию ракеты-носителя среднего класса для использования в составе космических ракетных комплексов «Байтерек», «Морской старт» и РН СТК.

Характеристическая скорость (ХС, ΔV) — скалярная величина, характеризующая изменение энергии летательного аппарата при использовании ракетных двигателей. Физический смысл — скорость (измеряется в метрах в секунду), которую приобретёт аппарат, двигаясь по прямой только под действием силы тяги при определённых затратах топлива. Используется (в том числе) для оценки затрат энергии, потребных на выполнение ракетодинамических маневров (потребная ХС), либо располагаемой энергетики, определяемой бортовым запасом топлива или рабочего тела (располагаемая ХС).

Вывоз на старт ракеты-носителя «Энергия» с орбитальным кораблём «Буран»

«Энергия» — «Буран» — советский КРК с ракетой-носителем сверхтяжёлого класса и многоразовым крылатым орбитальным кораблём. Разрабатывался с 1976 года как ответ американской системе Space Shuttle. В период с мая 1987 года по ноябрь 1988 года совершил два полёта (с массогабаритным аналогом полезной нагрузки и с орбитальным кораблём соответственно). Программа закрыта в 1993 году.

ЭПАС (экспериментальный полёт «Аполлон» — «Союз») — совместная советско-американская программа, в ходе которой в 1975 году пилотируемые корабли «Союз» и Apollo совершили взаимный поиск, стыковку и совместный полёт по околоземной орбите. В США известна как ASTP (Apollo-Soyuz Test Project).

Под многоразовым космическим кораблём подразумевается такой аппарат, конструкция которого позволяет повторно использовать весь корабль или его основные части. Первым опытом в этой сфере стал «космический челнок» Space Shuttle. Затем задачу создания аналогичного аппарата поставили советским учёным, в результате чего появился «Буран».

В обеих странах проектируют и другие аппараты. На данный момент самым заметным примером проектов такого типа является частично многоразовый Falcon 9 от компании SpaceX с возвращаемой первой ступенью.

Сегодня поговорим о том, зачем подобные проекты разрабатывали, как они показали себя с точки зрения эффективности и какие перспективы у этого направления космонавтики.


История космических челноков началась в 1967 году, до первого пилотируемого полёта по программе «Аполлон». 30 октября 1968 года НАСА обратилось к американским космическим компаниям с предложением проработать многоразовую космическую систему с целью снижения затрат на каждый пуск и на каждый килограмм полезного груза, выведенного на орбиту.

Правительству предложили несколько проектов, но каждый из них стоил не менее пяти миллиардов долларов США, так что Ричард Никсон отверг их. Планы у НАСА были крайне амбициозные: проект подразумевал работу орбитальной станции, на которую, и с которой, челноки постоянно возили бы полезные грузы. Также челноки должны были запускать и возвращать спутники с орбиты, обслуживать и ремонтировать спутники на орбите, проводить пилотируемые миссии.

Финальные требования к кораблю выглядели так:

  • Грузовой отсек 4,5х18,2 метра
  • Возможность горизонтального маневра на 2000 км (маневр самолета в горизонтальной плоскости)
  • Грузоподъёмность 30 тонн на низкую околоземную орбиту, 18 тонн на полярную орбиту
Решением стало создание шаттла, инвестиции в который должны были окупиться благодаря выводу на орбиту спутников на коммерческой основе. Для успеха проекта было важно максимально снизить стоимость вывода каждого килограмма груза на орбиту. В 1969 году создатель проекта говорил о снижении стоимости до 40-100 американских долларов за килограмм, в то время как для Сатурн-V этот показатель составлял 2000 долларов.

Для запуска в космос шаттлы использовали два твердотопливных ракетных ускорителя и три собственных маршевых двигателя. Твердотопливные ракетные ускорители отделялись на высоте 45 километров, затем приводнялись в океан, ремонтировались и использовались повторно. Главные двигатели используют жидкий водород и кислород в подвесном топливном баке, который отбрасывался на высоте 113 километров, после чего частично сгорал в атмосфере.

В СССР решили, что характеристики «Спейс шаттла» позволяют похищать с орбиты советские спутники или целую космическую станцию: челнок мог выводить на орбиту 29,5 тонн груза, а спускать - 14,5 тонн. С учётом планов в 60 пусков в год это 1770 тонн ежегодно, хотя на тот момент США не отправляли в космос и 150 тонн за год. Спускать предполагалось 820 тонн в год, хотя обычно с орбиты ничего не спускалось. Чертежи и фото шаттла позволяли предположить, что американский корабль может с помощью ядерных боеприпасов атаковать СССР из любой точки околоземного пространства, находясь вне зоны радиовидимости.

Для защиты от возможного нападения на станциях «Салют» и «Алмаз» установили модернизированную автоматическую 23-миллиметровую пушку НР-23. А чтобы не отставать от американских братьев в военнизированном космосе, в Союзе начали разработку орбитального корабля-ракетоплана многоразовой космической системы «Буран» .

Разработка многоразовой космической системы началась в апреле 1973 года. Сама идея имела множество сторонников и противников. Руководитель института Минобороны по военному космосу подстраховался и сделал сразу два отчёта - в пользу и против программы, и оба эти отчёта оказались на столе Д. Ф. Устинова, Министра обороны СССР. Он связался с Валентином Глушко, ответственным за программу, но тот отправил на встречу вместо себя своего сотрудника в «Энергомаше» - Валерия Бурдакова. После разговора на тему военных возможностей «Спейс Шаттла» и советского аналога, Устинов подготовил решение, по которому разработка многоразового космического корабля получила самый высокий приоритет. За создание корабля принялось созданное для этих целей НПО «Молния».

Задачами «Бурана» по плану Минобороны СССР были: противодействие мероприятиям вероятного противника по расширению использования космического пространства в военных целях, решение задач в интересах обороны, народного хозяйства и науки, проведение военно-прикладных исследований и экспериментов с использованием оружия на известных и новых физических принципах, а также выведение на орбиту, обслуживание и возвращение на землю космических аппаратов, космонавтов и грузов.

В отличие от НАСА, которое рискнуло экипажем во время первого пилотируемого полёта шаттла, свой первый полёт «Буран» совершил в автоматическом режиме с помощью бортового компьютера на базе IBM System/370. 15 ноября 1988 года состоялся пуск, ракета-носитель «Энергия» вывела космический корабль на околоземную орбиту с космодрома Байконур. Корабль совершил два витка вокруг Земли и произвёл посадку на аэродроме «Юбилейный».

Во время посадки произошло происшествие, которое показало, насколько умной получилась автоматическая система. На высоте 11 километров корабль совершил резкий манёвр и описал петлю с разворотом на 180 градусов - то есть сел, зайдя с другого конца посадочной полосы. Это решение автоматика приняла после получения данных о штормовом ветре, чтобы зайти по наиболее выгодной траектории.

Автоматический режим был одним из главных отличий от шаттла. Кроме того, шаттлы садились с неработающим двигателем и не могли несколько раз заходить на посадку. Для спасения экипажа в «Буране» предусмотрели катапульту для первых двух пилотов. По сути конструкторы из СССР скопировали конфигурацию шаттлов, чего не отрицали, но сделали ряд крайне полезных нововведений с точки управления аппаратом и безопасности экипажа.

К сожалению, . В 1990 году работу приостановили, а в 1993 - полностью закрыли.


Как иногда случается с предметами гордости нации, версия 2.01 «Байкал», которую хотели отправить в космос, гнил долгие годы на причале Химкинского водохранилища.

К истории вы могли прикоснуться в 2011 году. Более того, тогда от этой истории люди даже куски обшивки и теплозащитного покрытия могли оторвать . В том году корабль доставили из Химок в Жуковский, чтобы реставрировать и представить на МАКСе через пару лет.


«Буран» изнутри


Доставка «Бурана» из Химок в Жуковский


«Буран» на МАКСе, 2011 год, через месяц после начала реставрации

Несмотря на экономическую нецелесообразность, которую показала программа «Спейс Шаттл», США решили не отказываться от проектов по созданию многоразовых космических кораблей. В 1999 году НАСА вместе с Boeing начало разработку беспилотника X-37. Существуют версии , по которым аппарат предназначен для обкатки технологий будущих космических перехватчиков, способных выводить из строя другие аппараты. К такому мнению склоняются эксперты в США.

Аппарат совершил три полёта максимальной продолжительностью 674 суток. В данный момент он совершает четвёртый полёт, дата запуска - 20 мая 2015 года.

Орбитальная летающая лаборатория Boeing X-37 несёт массу полезного груза до 900 килограммов. По сравнению со «Спейс Шаттлом» и «Бураном», способными нести до 30 тонн при взлёта, Boeing - малыш. Но у него и цели другие. Начало положил австрийский физик Эйген Зенгер, когда в 1934 году приступил к разработке дальнего ракетного бомбардировщика. Проект закрыли, вспомнив о нём в 1944 году, к концу Второй мировой войны, но спасать Германию от поражения с помощью такого бомбардировщика было поздно. В октябре 1957 года идею продолжили американцы, запустив программу X-20 Dyna-Soar.

Орбитальный самолёт X-20 был способен после выхода на суборбитальную траекторию нырнуть в атмосферу до высоты 40-60 километров с целью сделать фото или сбросить бомбу, после чего вернуться в космос на подъёмной силе от крыльев.

Проект закрыли в 1963 году в пользу гражданской программы Gemini и военного проекта орбитальной станции MOL.


Ракеты-носители Titan для вывода X-20 на орбиту


Макет X-20

В СССР в 1969 году начали строить «БОР» - беспилотный орбитальный ракетоплан. Первый пуск провели без теплозащиты, из-за чего аппарат сгорел. Второй ракетоплан разбился из-за нераскрывшихся парашютов после успешного торможения об атмосферу. В следующих пяти пусков только один раз БОР не вышел на орбиту. Несмотря на потери аппаратов, каждый новый старт приносил важные для дальнейшей разработки данные. С помощью БОР-4 в 1980-х годах тестировали теплозащиту для будущего «Бурана».

В рамках программы «Спираль», для которой строили «БОР», предполагалось разработать самолёт-разгонник, который бы поднимался на высоту 30 километров на скорости до 6 скоростей звука, чтобы вывести орбитальный аппарат на орбиту. Эта часть программы не состоялась. Минобороны требовала аналог американского шаттла, так что силы бросили на «Буран».


БОР-4


БОР-4

Если советский «Буран» был частично скопирован с американского «Спейс Шаттла», то в случае с «Dream Chaser» всё произошло с точностью до наоборот: заброшенный проект «БОР», а именно ракетоплан версии «БОР-4», стал основой для создания многоразового космического корабля от компании SpaceDev. Вернее, «Space Chaser» основан на скопированном орбитальном самолёте HL-20.

Работы над «Бегущим за мечтой» начались в 2004 году, а в 2007 году SpaceDev договорились с United Launch Alliance об использовании для запуска ракет «Атлас-5». Первые успешные испытания в аэродинамической трубе прошли в 2012 году. Первый лётный прототип сбросили с вертолёта с высоты 3,8 километра 26 октября 2013 года.

Грузовая версия корабля по планам конструкторов сможет доставлять на Международную космическую станцию до 5,5 тонн, а возвращать до 1,75 тонны.

Свой вариант многоразовой системы в 1985 году начали разрабатывать немцы - проект назывался «Зенгер». В 1995 году, после разработки двигателя, проект закрыли, так как он дал бы выгоду только в 10-30% по сравнению с европейской ракетой-носителем «Ариан 5».


Летательный аппарат HL-20


«Dream Chaser»

На смену одноразовым «Союзам» в России с 2000 годов начали разрабатывать многоцелевой космический корабль «Клипер». Система стала промежуточным звеном между крылатыми шаттлами и баллистической капсулой «Союза». В 2005 году в целях сотрудничества с Европейским космическим агентством была представлена новая версия - крылатый «Клипер».

Аппарат может выводить на орбиту 6 человек и до 700 килограммов груза, то есть превосходит по этим параметрам «Союз» в два раза. На данный момент нет информации о том, что работа проекта продолжается. Вместо этого в новостях пишут о новом многоразовом корабле – «Федерация».


Многоцелевой космический корабль «Клипер»

Пилотируемый транспортный корабль «Федерация» должен придти на смену пилотируемым «Союзам» и грузовикам «Прогрессам». Его планируют использовать в том числе для . Первый запуск запланирован на 2019 год. В автономном полёте аппарат должен будет способен находиться до 40 суток, а при стыковке с орбитальной станции он сможет работать до 1 года. На данный момент завершена разработка эскизного и технического проектов, идёт разработка рабочей документации по созданию корабля первого этапа.

Система состоит из двух основных модулей: возвращаемого аппарата и двигательного отсека. В работе применят идеи, которые ранее использовали для «Клипера». Корабль сможет доставлять до 6 человек на орбиту и до 4 человек на Луну.


Параметры аппарата «Федерация»

Одним из самых заметных в СМИ на данный момент многоразовых проектов являются разработки SpaceX - транспортный корабль Dragon V2 и ракета-носитель Falcon 9.

Falcon 9 является частично возвращаемым аппаратом. Ракета-носитель состоит из двух ступеней, первая из которых имеет систему для

План работы

КОСМИЧЕСКИЕ АППАРАТЫ КОСМИЧЕСКОЙ ТЕХНОЛОГИИ И МАТЕРИАЛОВЕДЕНИЯ ФОТОН

КОСМИЧЕСКИЕ АППАРАТЫ КОСМИЧЕСКОЙ МЕДИЦИНЫ И БИОЛОГИИ БИОН

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

КОСМИЧЕСКИЕ АППАРАТЫ ИССЛЕДОВАНИЯ ПРИРОДНЫХ РЕСУРСОВ ЗЕМЛИ И КОНТРОЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ СЕРИИ РЕСУРС-Ф

Для исследования природных ресурсов Земли и контроля окружающей среды разработана космическая система Ресурс-Ф, которая включает в себя КА Ресурс-Ф1 и Ресурс-Ф2, являющиеся КА серии Зенит третьего поколения.

Общий вид КА Ресурс-Ф1 приведен на рис. 1. Аппарат периодически запускается с 1981г. РН Союз. Масса КА 6300 кг, масса научной аппаратуры 800 кг.

Вначале КА Ресурс-Ф1 выводится РН на промежуточную орбиту. Далее с использованием КДУ формируется рабочая орбита в диапазоне высот 250 - 400 км и наклонением к плоскости экватора 63…83°. Параметры рабочих орбит выбираются из условия обеспечения сплошного покрытия поверхности Земли полосами захвата фотоаппаратуры с необходимым поперечным перекрытием на заданной географической широте. Поддержание заданного значения поперечного перекрытия в процессе полета КА осуществляется за счет проведения соответствующих маневров на орбите.

КА Ресурс-Ф1 может находиться на орбите до 25 суток. Из них 11 суток аппарат находится в дежурном режиме, т.е. с выключенными системой ориентации и некоторыми другими бортовыми системами. Наличие дежурного режима позволяет увеличить срок существования КА на орбите и обеспечивает 2-х кратное покрытие части межвиткового интервала, используемое для повторного фотографирования.

Наряду с выполнением основной задачи полета - проведения фотосъемок поверхности Земли, КА типа Ресурс-Ф способен выводить на орбиту научную аппаратуру для проведения различных экспериментов в условиях космического пространства.

Научная аппаратура может находиться в спускаемом аппарате и в контейнере научной аппаратуры, установленном на поверхности СА. Научная аппаратура работает в космосе при открытой крышке контейнера. Перед спуском крышка закрывается, и научная аппаратура доставляется на Землю. Установленная снаружи КА научная аппаратура не возвращается на Землю, информация с нее может передаваться только по радиотелеметрической системе.

1 – бленда звездного фотоаппарата; 2 – спускаемый аппарат; 3 – тормозная двигательная установка; 4 – корректирующая двигательная установка; 5 – приборный отсек



В комплекс исследовательской аппаратуры КА зондирования включены:

Три широкоформатных топографических аппарата КАТЭ-200 с размером кадра 180х180 мм и фокусным расстоянием 200 мм для съемок в спектральных диапазонах 510 ‑ 600, 600 ‑ 700, 700 ‑ 850 нм, позволяющие получать синхронные снимки территорий с разрешением до 15 ‑ 20 м (в каждом аппарате по 1800 кадров);

Два длиннофокусных широкоформатных аппарата КФА-1000 с размером кадра 300х300 мм и фокусным расстоянием 1000 мм, ведущие съемку в спектральном диапазоне 570 ‑ 800 нм, позволяющие получать спектрозональные снимки (в каждом аппарате по 1200 кадров) с разрешением до 6 - 8 м, которое последующей обработкой может быть улучшено до 2 - 4 м.

В составе фотоаппаратуры КА имеется звездный аппарат для определения элементов внешнего ориентирования КА (фотографирование звезд до 5 звездной величины) с целью координатной привязки осей космического аппарата в пространстве в момент выполнения съемки и анализа особенностей его перемещения- Точность определения углового положения составляет 40 - 60.

Бортовой комплекс управления КА обеспечивает проведение многозональной (КАТЭ-200) и спектрозональной (КФА-1000) съемок совместно и по отдельности (предусмотренно шесть различных режимов работы, отличающихся друг от друга числом одновременно включаемых фотокамер).

Ширина полосы фотографирования и фотографируемая площадь с высоты 250 км составляет соответственно 225 км и 27 млн. км 2 при многозональной съемке и 147 км и 16 млн. км 2 при спектрозональной съемке.

Следует отметить, что диапазон широт наблюдения (±83°) обеспечивает практически глобальный обзор территории земного шара. Во время полета с наземных пунктов осуществляется управление и телеметрический контроль работы космического аппарата.

С помощью КА типа Ресурс-Ф1 обеспечивается получение высококачественной картографической информации в масштабах 1: 1000000 и 1: 200000.

Основные технические характеристики КА Ресурс-Ф1 и фотоаппаратуры приведены в табл.1 и 2.

Схема фотографирования КА Ресурс-Ф1 показана на рис.2.

Космический аппарат Ресурс-Ф2, общий вид которого показан на рис. 3, запускается с 1988г. РН Союз и обеспечивает синхронную многозональную и спектрозональную (или цветную) фотосъемку поверхности Земли с высоким разрешением. Аппарат функционирует на околокруговых орбитах в диапазоне высот 210…450 км с наклонением орбиты к плоскости экватора 63°…83° Масса КА Ресурс-Ф2 6300…6450 кг.

В отличие от КА Ресурс-Ф1 в космическом аппарате Ресурс-Ф2 используется система электропитания на базе солнечной энергетической установки, что позволяет увеличить время активного существования до 30 суток. В КА установлена высокоинформативная многозональная фотокамера МК-4, которая обеспечивает фотографирование в четырех зонах спектра из шести возможных (см. табл.1). МК-4 позволяет получать многозональные снимки с разрешением 5-8 м, спектрозональные снимки с разрешением 8-12 м. В каждый кадр снимка впечатывается необходимая информация: номер кадра, код бортового времени, значение фактической выдержки, координатные кресты, фотометрический клин (устройство для ослабления светового потока).

В составе фотоаппаратуры КА Ресурс-Ф2 имеется звездная камера для определения элементов внешнего ориентирования КА. Фотоаппаратура позволяет при необходимости проводить многозональную съемку в сочетании со спектрозональной и цветной фотосъемкой.

Время активного существования (до 30 суток) дает возможность осуществить двух - трехкратное покрытие всего межвиткового интервала, поэтому здесь не предусматривается дежурный режим.

Основные технические характеристики КА Ресурс-Ф2 и фотокамеры МК-4 приведены в таблицах 3.1 и 3.2.

С помощью КА Ресурс-Ф2 возможно картографирование земной поверхности в масштабе 1: 50 000. Проведение фотосъемок с заданным продольным перекрытием обеспечивает стереоскопичность снимков.

Доставка информации на Землю осуществляется, как и в КА Ресурс-Ф1 в спускаемом аппарате.

На КА Ресурс-Ф2 может устанавливаться дополнительная исследовательская аппаратура.




1 – спускаемый аппарат; 2 – бленда звездного фотоаппарата; 3 – тормозная двигательная установка; 4 – корректирующая двигательная установка; 5 – солнечные батареи; 6 ‑ приборный отсек.



КОСМИЧЕСКИЕ АППАРАТЫ КОСМИЧЕСКОЙ ТЕХНОЛОГИИ И МАТЕРИАЛОВЕДЕНИЯ ФОТОН

Разработан в ЦСКБ (г. Самара) на базе ИСЗ серии Зенит. Запуск осуществляется РН Союз. Один из последних аппаратов функционировал 18 суток на орбите с высотой апогея 383 км, высотой перигея 228 км, наклонением i = 62.8°.

КА предназначен для проведения экспериментов по получению в условиях микрогравитации кристаллов белков и полупроводниковых материалов, отработки технологии их опытно-промышленного производства (установки Сплав, Каштан). Наряду с советскими установками для производства на орбите материалов с улучшенными свойствами на борту КА Фотон устанавливалась (4-20 октября 1991г.) немецкая (эксперимент Козима-4) и французская (эксперимент Седекс) аппаратура для проведения аналогичных работ. Имеются планы использования КА Фотон в рамках программы EuroKosmos для проведения полетов с размещением на борту оборудования для проведения исследований в условиях микрогравитации с последующим возвращением результатов в спускаемом аппарате. Предполагается завершить модификацию спускаемого аппарата КА Фотон, установив на нем дополнительную привязную возвращаемую микрокапсулу Мирка, которая в ходе полета будет разворачиваться на орбите с помощью троса длиной 30-50 м.

КОСМИЧЕСКИЕ АППАРАТЫ КОСМИЧЕСКОЙМЕДИЦИНЫ И БИОЛОГИИ БИОН

Разработан в ЦСКБ (г.Самара) на базе КА серии Зенит. Основной внешний отличительный признак - отсутствие носовой корректирующей двигательной установки, вместо которой установлен отсек с дополнительной полезной нагрузкой (рис. 5.1).



К настоящему времени проведено 10 запусков биологических КА (1966-1993г.). Последний из КА этой серии Космос 2229 (Бион-10) запущен РН Союз 29 декабря 1993г. и выведен на орбиту с параметрами: высота апогея - 396.8 км, высота перигея - 226 км, наклонение орбиты - 62.8° период обращения - 90.4 мин.

Ведущее предприятие по разработке и изготовлению комплекса научной аппаратуры - специальное конструкторско-технологическое бюро Биофизприбор Минздрава РФ (г. Санкт-Петербург). Для реализации программы научных экспериментов в полете биоспутника был создан комплекс аппаратуры, включающий:

Две капсулы БИОС-Примат для обеспечения условий содержания и проведения исследований на обезьянах;

Неизведанные глубины Космоса интересовали человечество на протяжении многих веков. Исследователи и ученые всегда делали шаги к познанию созвездий и космического простора. Это были первые, но значительные достижения на то время, которые послужили дальнейшему развитию исследований в этой отрасли.

Немаловажным достижением было изобретение телескопа, с помощью которого человечеству удалось заглянуть значительно дальше в космические просторы и познакомиться с космическими объектами, которые окружают нашу планету более близко. В наше время исследования космического пространства осуществляются значительно легче, чем в те года. Наш портал сайт предлагает Вам массу интересных и увлекательных фактов о Космосе и его загадках.

Первые космические аппараты и техника

Активное исследование космического пространства началось с запуска первого искусственно созданного спутника нашей планеты. Это событие датируется 1957 годом, когда он и был запущен на орбиту Земли. Что касается первого аппарата, который появился на орбите, то он был предельно простым в своей конструкции. Этот аппарат был оснащен достаточно простым радиопередатчиком. При его создании конструкторы решили обойтись самым минимальным техническим набором. Все же первый простейший спутник послужил стартом к развитию новой эры космической техники и аппаратуры. На сегодняшний день можно сказать, что это устройство стало огромным достижением для человечества и развития многих научных отраслей исследований. Кроме того, вывод спутника на орбиту был достижением для всего мира, а не только для СССР. Это стало возможным за счет упорной работы конструкторов над созданием баллистических ракет межконтинентального действия.

Именно высокие достижения в ракетостроении дали возможность осознать конструкторам, что при снижении полезного груза ракетоносителя можно достичь очень высоких скоростей полета, которые будут превышать космическую скорость в ~7,9 км/с. Все это и дало возможность вывести первый спутник на орбиту Земли. Космические аппараты и техника являются интересными из-за того, что предлагалось много различных конструкций и концепций.

В широком понятии космическим аппаратом называют устройство, которое осуществляет транспортировку оборудования или людей к границе, где заканчивается верхняя часть земной атмосферы. Но это выход лишь в ближний Космос. При решении различных космических задач космические аппараты разделены на такие категории:

Суборбитальные;

Орбитальные или околоземные, которые передвигаются по геоцентрическим орбитам;

Межпланетные;

Напланетные.

Созданием первой ракеты для вывода спутника в Космос занимались конструкторы СССР, причем само ее создание заняло меньше времени, чем доводка и отладка всех систем. Также временной фактор повлиял на примитивную комплектацию спутника, поскольку именно СССР стремился достичь показателя первой космической скорости ее творения. Тем более что сам факт вывода ракеты за пределы планеты был более веским достижением на то время, чем количество и качество установленной аппаратуры на спутник. Вся проделанная работа увенчалась триумфом для всего человечества.

Как известно, покорение космического пространства только было начато, именно поэтому конструкторы достигали все большего в ракетостроении, что и позволило создать более совершенные космические аппараты и технику, которые помогли сделать огромный скачок в исследовании Космоса. Также дальнейшее развитие и модернизация ракет и их компонентов позволили достичь второй космической скорости и увеличить массу полезного груза на борту. За счет всего этого стал возможным первый вывод ракеты с человеком на борту в 1961 году.

Портал сайт может поведать много интересного о развитии космических аппаратов и техники за все года и во всех странах мира. Мало кому известно, что действительно космические исследования учеными были начаты еще до 1957 года. В космическое пространство первая научная аппаратура для изучения была отправлена еще в конце 40-х годов. Первые отечественные ракеты смогли поднять научную аппаратуру на высоту в 100 километров. Кроме того, это был не единичный запуск, они проводились достаточно часто, при этом максимальная высота их подъема доходила до показателя в 500 километров, а это значит, что первые представления о космическом пространстве уже были до начала космической эры. В наше время при использовании самых последних технологий те достижения могут показаться примитивными, но именно они позволили достичь того, что мы имеем на данный момент.

Созданные космические аппараты и техника требовали решения огромного количества различных задач. Самыми важными проблемами были:

  1. Выбор правильной траектории полета космического аппарата и дальнейший анализ его движения. Для осуществления данной проблемы пришлось более активно развивать небесную механику, которая становилась прикладной наукой.
  2. Космический вакуум и невесомость поставили перед учеными свои задачи. И это не только создание надежного герметичного корпуса, который мог бы выдерживать достаточно жесткие космические условия, а и разработка аппаратуры, которая могла бы выполнять свои задачи в Космосе так же эффективно, как и на Земле. Поскольку не все механизмы могли отлично работать в невесомости и вакууме так же, как и в земных условиях. Основной проблемой было исключение тепловой конвекции в герметизированных объемах, все это нарушало нормальное протекание многих процессов.

  1. Работу оборудования нарушало также тепловое излучение от Солнца. Для устранения этого влияния пришлось продумывать новые методы расчета для устройств. Также была продумана масса устройств для поддержания нормальных температурных условий внутри самого космического аппарата.
  2. Большой проблемой стало электроснабжение космических устройств. Самым оптимальным решением конструкторов стало преобразование солнечного радиационного излучения в электроэнергию.
  3. Достаточно долго пришлось решать проблему радиосвязи и управления космическими аппаратами, поскольку наземные радиолокационные устройства могли работать только на расстоянии до 20 тысяч километров, а этого недостаточно для космических пространств. Эволюция сверхдальней радиосвязи в наше время позволяет поддерживать связь с зондами и другими аппаратами на расстоянии в миллионы километров.
  4. Все же наибольшей проблемой осталась доводка аппаратуры, которой были укомплектованы космические устройства. Прежде всего, техника должна быть надежной, поскольку ремонт в Космосе, как правило, был невозможен. Также были продуманы новые пути дублирования и записи информации.

Возникшие проблемы пробудили интерес исследователей и ученых разных областей знаний. Совместное сотрудничество позволило получить положительные результаты при решении поставленных задач. В силу всего этого начала зарождаться новая область знаний, а именно космическая техника. Возникновение данного рода конструирования было отделено от авиации и других отраслей за счет его уникальности, особых знаний и навыков работы.

Непосредственно после создания и удачного запуска первого искусственного спутника Земли развитие космической техники проходило в трех основных направлениях, а именно:

  1. Проектирование и изготовление спутников Земли для выполнения различных задач. Кроме того, данная отрасль занимается модернизацией и усовершенствованием этих устройств, за счет чего появляется возможность применять их более широко.
  2. Создание аппаратов для исследования межпланетного пространства и поверхностей других планет. Как правило, данные устройства осуществляют запрограммированные задачи, также ими можно управлять дистанционно.
  3. Космическая техника прорабатывает различные модели создания космических станций, на которых можно проводить исследовательскую деятельность учеными. Эта отрасль также занимается проектированием и изготовлением пилотируемых кораблей для космического пространства.

Множество областей работы космической техники и достижения второй космической скорости позволили ученым получить доступ к более дальним космическим объектам. Именно поэтому в конце 50-х годов удалось осуществить пуск спутника в сторону Луны, кроме того, техника того времени уже позволяла отправлять исследовательские спутники к ближайшим планетам возле Земли. Так, первые аппараты, которые были посланы на изучение Луны, позволили человечеству впервые узнать о параметрах космического пространства и увидеть обратную сторону Луны. Все же космическая техника начала космической эры была еще несовершенная и неуправляемая, и после отделения от ракетоносителя главная часть вращалась достаточно хаотически вокруг центра своей массы. Неуправляемое вращение не позволяло ученым производить много исследований, что, в свою очередь, стимулировало конструкторов к созданию более совершенных космических аппаратов и техники.

Именно разработка управляемых аппаратов позволила ученым провести еще больше исследований и узнать больше о космическом пространстве и его свойствах. Также контролируемый и стабильный полет спутников и других автоматических устройств, запущенных в Космос, позволяет более точно и качественно передавать информацию на Землю за счет ориентации антенн. За счет контролируемого управления можно осуществлять необходимые маневры.

В начале 60-х годов активно проводились пуски спутников к самым близким планетам. Эти запуски позволили более подробно ознакомиться с условиями на соседних планетах. Но все же самым большим успехом этого времени для всего человечества нашей планеты является полет Ю.А. Гагарина. После достижений СССР в строении космической аппаратуры большинство стран мира также обратили особое внимание на ракетостроение и создание собственной космической техники. Все же СССР являлся лидером в данной отрасли, поскольку ему первому удалось создать аппарат, который осуществил мягкое прилунение. После первых успешных посадок на Луне и других планетах была поставлена задача для более детального исследования поверхностей космических тел с помощью автоматических устройств для изучения поверхностей и передачи на Землю фото и видео.

Первые космические аппараты, как говорилось выше, были неуправляемыми и не могли вернуться на Землю. При создании управляемых устройств конструкторы столкнулись с проблемой безопасного приземления устройств и экипажа. Поскольку очень быстрое вхождение устройства в атмосферу Земли могло просто сжечь его от высокой температуры при трении. Кроме того, при возвращении устройства должны были безопасно приземляться и приводняться в самых различных условиях.

Дальнейшее развитие космической техники позволило изготовлять орбитальные станции, которые можно использовать на протяжении многих лет, при этом менять состав исследователей на борту. Первым орбитальным аппаратом данного типа стала советская станция «Салют». Ее создание стало очередным огромным скачком человечества в познании космических пространств и явлений.

Выше указана очень маленькая часть всех событий и достижений при создании и использовании космических аппаратов и техники, которая была создана в мире для изучения Космоса. Но все же самым знаменательным стал 1957 год, с которого и началась эпоха активного ракетостроения и изучения Космоса. Именно запуск первого зонда породил взрывоподобное развитие космической техники во всем мире. А это стало возможным за счет создания в СССР ракетоносителя нового поколения, который и смог поднять зонд на высоту орбиты Земли.

Чтобы узнать обо всем этом и многом другом, наш портал сайт предлагает Вашему вниманию массу увлекательных статей, видеозаписей и фотографий космической техники и объектов.

Человека всегда манили холодные дали космоса... Они поражают своей мрачной загадочностью. Наверное, от огромного желания прикоснуться к неизвестному, люди придумали летательные аппараты.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Малые космические аппараты

Космический аппарат «Кассини»

Первые спутники

Для совершения межпланетных странствий в свое время понадобилось создание мощных, современных и прочных машин, которые могли бы преодолеть не только силу притяжения нашей планеты, но и различные неблагоприятные условия окружающей среды межпланетного пространства. Для преодоления силы притяжения нашей планеты летательному аппарату требуется скорость свыше одиннадцати километров в секунду. Преодолевая силы притяжения Земли, действующие на него в полете, аппарат выходит в открытый космос — межпланетное пространство.

Но здесь космос только начинается. Далее нужно преодолеть силу притяжения Солнца и выйти из-под его «власти», для этого понадобится средняя скорость движения свыше шестнадцати километров в секунду. Так летательный аппарат выходит из зоны влияния Солнца и попадает в межзвездное пространство. Однако и это не предел, ибо размеры космоса безграничны, как безграничны размеры человеческого сознания. Чтобы продвинутся дальше, а именно выйти в межгалактическое пространство, нужно развить скорость свыше пятисот километров в секунду.

Первым спутником нашей планеты стал «Спутник-1», запущенный Советским Союзом с целью изучения космического пространства вокруг Земли. Это был прорыв в сфере изучения космоса. Благодаря запуску первого спутника была подробно изучена собственная атмосфера Земли, а так же окружающее ее космическое пространство. Самым быстрым и самым далеким космическим аппаратом по отношению к нашей планете на сегодняшний день является спутник «Вояджер-1». Он исследует Солнечную систему и ее окрестности уже сорок лет. За эти сорок лет были собраны бесценные данные, которые могут послужить хорошим плацдармом для научных открытий будущего.

Одним из приоритетных направлений науки в сфере изучения космоса является исследование Марса. Что касается полета на эту планету, то пока такая идея остается лишь на бумаге, хотя работы в ее направлении ведутся. Путем проб и ошибок, анализа отказов космических летательных аппаратов ученые пытаются найти максимально комфортный вариант полета на Марс. Еще очень важно, чтобы внутри корабля для экипажа были созданы самые безопасные условия. Одной из главных проблем сегодня является электризация космического корабля во время высоких скоростных режимов, что создает опасность возгорания. Но все равно, даже несмотря на это, жажда человека к познанию космоса неугасаема. Об этом говорит огромный список межпланетных путешествий, осуществленных на сегодняшний день.

Запуски космических аппаратов в 2017 году

Список запусков космических аппаратов в 2017-м году весьма велик. Лидером в списке запусков космических аппаратов,конечно, является Америка, как флагман научных исследований в области изучения космоса, однако и другие страны так же не отстают. И статистика запусков положительна, за весь 2017-й год неудачных запусков было всего лишь три.

Исследование Луны космическими аппаратами

Конечно же, самым привлекательным объектом исследований человека всегда была Луна. В 1969 году человек впервые ступил на поверхность Луны. Ученые, которые занимались изучением планеты Меркурий, утверждают, что Луна и Меркурий похожи по физическим характеристикам. Снимок, сделанный космическим аппаратом с орбиты Сатурна, показывает, что Луна выглядит как светлая точка посреди безграничного мрака космоса.

Космические аппараты России

Большая часть нынешних космических аппаратов России — это советские летательные аппараты многоразового использования, которые были запущены в космос еще во времена СССР. Однако и современные летательные аппараты в России также добиваются успеха в исследования космического пространства. Российские ученые планируют множество полетов к поверхности Луны, Марса и Юпитера. Наибольший вклад в изучение Венеры, Луны и Марса совершили советские научно-исследовательские станции с одноименными названиями. Ими совершено великое множество полетов, результатами которых стали бесценные фото и видеоматериалы, замеры температуры, давления, изучение атмосферы этих планет и т д.

Классификация космических аппаратов

По принципу работы и специализации космические аппараты делятся на:

  • искусственные спутники планет;
  • космические станции для межпланетных исследований;
  • планетоходы;
  • космические корабли;
  • орбитальные станции.

Спутники земли, орбитальные станции и космические корабли предназначены для исследований Земли и планет солнечной системы. Космические станции предназначены для исследований за пределами Солнечной системы.

Спускаемый аппарат космического корабля «Союз»

«Союз» — это пилотируемый космический корабль с научной аппаратурой на борту, бортовой аппаратурой, возможностью связи между космическим аппаратом и землей, наличием энергопреобразующей аппаратуры, телеметрической системой, системой ориентации и стабилизации и многими другими системами и приборами для проведения научно-исследовательской работы и жизнеобеспечения экипажа. Спускаемый аппарат корабля «Союз» имеет внушительный вес — от 2800 до 2900 кг в зависимости от марки корабля. Один из минусов корабля — высокая вероятность выхода из строя радиосвязи и нераскрытые панели солнечных батарей. Но это исправили в более поздних версиях корабля.

История космических аппаратов серии «Ресурс-Ф»

История серии «Ресурса» берет свое началов 1979 году. Это серия космических аппаратов для ведения фото и видео съемки в космическом пространстве, а также для картографических исследований поверхности Земли. Информация, получаемая с помощью космических аппаратов серии «Ресурс-Ф», применяется в картографии, геодезии, а также для контроля сейсмической активности коры Земли.

Малые космические аппараты

Искусственные спутники, имеющие небольшие размеры, рассчитаны на решение простейших задач. О том, как они используются и какую роль играют в изучении космоса и поверхности земли известно немало. В основном их задача — мониторинг и исследования поверхности Земли. Классификация малых спутников зависит от их массы. Разделяют:

  • миниспутники;
  • микроспутники;
  • наноспутники;
  • пикоспутники;
  • фемтоспутники.

В зависимости от размера и массы спутника определяется его задача, но так или иначе все спутники данной серии исполняют задачи по исследованиям поверхности Земли.

Электроракетный двигатель для космических аппаратов

Суть работы электродвигателя в преобразовании электрической энергии в кинетическую. Электроракетные двигатели делятся на: электростатические, электротермические, электромагнитные, магнитодинамические, импульсные, ионные. Ядерный электродвигатель открывает возможности полета к далеким звездам и планетам за счет своей мощности. Двигательная установка преобразует энергию в механическую, что позволяет развить скорость, необходимую для преодоления силы земного притяжения.

Проектирование космических аппаратов

Разработка систем космических аппаратов зависит от задач, которые на эти аппараты возлагаются. Их деятельность может охватывать весьма разные сферы деятельности — от научно-исследовательских до метеорологических и военно-разведывательных. Проектирование и снабжение аппаратов определенными системами и функциями происходит в зависимости от поставленных перед ними задач.

Космический аппарат «Кассини»

На весь мир известны имена этих разведчиков тайн Вселенной — «Юнона», «Метеор», «Розетта», Галилео«, «Феникс», «Пионер», «Юбилейный», "Dawn"(Доун), " Акацуки«, «Вояджер», «Магеллан», «Асе», «Тундра», «Буран», «Русь», «Улисс», "Нивелир-ЗУ«(14ф150), «Genesis», «Викинг», «Вега», «Луна-2», «Луна-3», «Soho», «Меридиан», «Стардаст», «Джемини-12», «Спектр-РГ» , «Горизонт», «Федерация», серия аппаратов «Ресурс-П» и многие другие, список можно продолжать бесконечно. Благодаря собранной ими информации, мы можем открывать все новые и новые горизонты.

Не менее качественный и уникальный космический аппарат «Cassini» был запущен в далеком 1997-ом году и двадцать лет служил на благо человечества. Его прерогатива — изучение далекого и загадочного «властелина колец» нашей Солнечной системы — Сатурна. В сентябре этого года аппарат завершил свою почетную миссию путеводной звезды человечества и, как и положено падающей звезде, сгорел в полете дотла, не коснувшись родной Земли.