Как работает упорный подшипник. Виды подшипников

Подшипники — одно из ключевых изобретений, которое определило путь развития промышленности. Самый простой подшипник состоит из двух колец, вставленных одно в другое и предназначенное для поддержания и направления вращающегося вала.

Основные типы

Все подшипники могут быть разделены на две основные группы – подшипники качения и скольжения. Конструкция первых состоит из

  • двух колец – внешнего и внутреннего;
  • шариков;
  • сепаратора, в котором установлены шарики.
  • Подшипники скольжения имеют следующую конструкцию:
  • внешняя обойма;
  • внутренняя обойма, выполненная из материала с низким коэффициентом трения, например, тефлон (фторопласт).

Задача, которую призваны решать подшипники любого типа – это снижение трения между вращающимся и стационарными узлами агрегата. Это необходимо для снижения потерь энергии, нагрева и износа деталей, вызываемыми силой трения.

Подшипники скольжения

Этот узел обычно выполняют в виде массивной опоры, изготовленной из металла. В ней проделывают отверстие, куда вставляют втулку или вкладыш, выполненный из материала с низким коэффициентом трения.
Для повышения эффективности работы этого узла и снижения трения в него вводят жидкую или плотную смазку. Это приводит к тому, что вал отделяется от втулки пленкой маслянистой жидкости. Эксплуатационные параметры подшипника скольжения зависят от следующих параметров:

  1. Размера элементов, входящих в этот узел.
  2. Скоростью вращения вала и размера нагрузок, приходящихся на него.
  3. Густотой смазки.

Для обеспечения смазывания подшипника можно использовать любую вязкую жидкость – масло, керосин, эмульсии. В некоторых моделях подшипников скольжения для смазки применяют газы. Кроме, перечисленных материалов применяют и твердые, иногда их называют консистентные, смазки.

В некоторых конструкциях подшипников предусмотрена принудительная система смазки.

Подшипники качения

Внешний вид подшипника качения

В подшипниках этого типа трение скольжение подменяется трением качения. Благодаря такому решению происходит существенное снижение трения и износа.
Подшипники качения имеют разнообразные конструкции и размеры. В качестве тел вращения могут быть использованы шарики, ролики, иголки.

Шарикоподшипники

Шарикоподшипники являются самым распространенным типом подшипников. Он состоит из двух колец, между которыми устанавливают сепаратор с предустановленными шариками определенного размера. Шарики перемещаются по канавкам, которые, при изготовлении тщательно шлифуют. Ведь для полноценной работы подшипника необходимо, чтобы шарики не проскальзывали, и при этом у них была существенная площадь опоры.
Сепаратор, в который устанавливают шарики, обеспечивает их точное положение и исключает какой-либо контакт между ними. Производители выпускают изделия, которые укомплектованы двухрядными сепараторами.

Подшипники этого класса применяют при довольно небольших радиальных нагрузках и большом количестве оборотов рабочего вала.

Роликоподшипники

В подшипниках этого класса в качестве тел вращения применяют ролики различной формы. Они могут иметь форму цилиндров, усеченных конусов и пр. Производители освоили выпуск широкой номенклатуры роликовых подшипников с разными размерами колец и тел вращения.
Конический роликоподшипник используют для работы при наличии разнонаправленных нагрузках (осевой и радиальной) и больших оборотах на валу. Конструктивно роликовый подшипник похож на шариковый. Он также состоит из двух колец, сепаратора и роликов. Размеры роликовых подшипников определены в ряде стандартов, которые имеют силу в нашей стране. Например, ГОСТ 8328-75 определяет конструкцию, маркировку и размеры подшипников с короткими роликами. А ГОСТ 4657-82 регламентирует размеры и конструкцию игольчатых подшипников. То есть на каждый вид подшипников существует свой ГОСТ.

Существуют два типа подшипников скольжения — гидростатические и гидродинамические. В изделиях первого типа смазка подается от масляного насоса. Вторые в этом плане удобнее, они сами могут выступать в роли насоса. Смазка будет поступать в них за счет разности давления между его компонентами.

Подшипники скольжения могут иметь, сферическое, упорное и линейное исполнения. Первые подшипники применяют в тех узлах, где преобладают низкие скорости вращения вала. Главное достоинство такого исполнения подшипников – это возможность передавать вращение даже при значительных перекосах валов.

Подшипники упорного исполнения применяют для работы там, где преобладают поперечные усилия. Довольно часто их монтируют в турбинах и паровых машинах.

Многолетняя, если не многовековая практика использования подшипников скольжения позволяет сделать выводы о достоинствах и недостатках этих конструкций.

  • изделия этого класса обеспечивают надежную работу в условиях высоких скоростей вращения вала;
  • обеспечение серьезных ударных и вибрационных усилий;
  • довольно небольшие размеры;
  • подшипники этого типа допустимо устанавливать в устройствах работающие в воде;
  • некоторые модели позволяют выполнять настройку зазора и, таким образом, гарантируют точность установки оси вала.

Между тем, подшипникам скольжения присущи и определенные недостатки.

  • в процессе эксплуатации необходимо постоянно контролировать уровень смазки;
  • при недостаточной смазке и запуске возникает дополнительная сила трения;
  • более низкий в сравнении с другими классами подшипников КПД;
  • при производстве таких изделий применяют довольно дорогие материалы;
  • при работе, подшипники этого класса могут генерировать излишний шум.

Стандарты подшипников скольжения

Одно из отличий подшипников от других типов деталей, применяемых в промышленности – это то, что они все стандартизированы. Выше было отмечено что на продукцию этого класса действует 60 ГОСТ, и это не считая ТУ и другой нормативной документации.
ГОСТ не только нормирует конструкцию и размеры подшипников, но и порядок их обозначения на чертежах, в спецификациях и другой рабочей документации.

Кроме того, ГОСТ на технические условия подшипников регламентирует параметры допусков и посадок, которые обязаны соблюдать производители.

Маркировка

Маркировка подшипников – это параметры, которые показывают рабочие диаметры изделия (внутренний и внешний), конструктивные особенности. Все эти данные закодированы в наборе цифр и буквенных символов. Порядок кодировки, детальная расшифровка регламентирована в ГОСТах на подшипниковую продукцию. Так, кодировка шариковых и роликовых подшипников однорядных приведена в ГОСТ 3189-89.

В закодированном наименовании подшипника содержатся следующие данные:

  • серия ширины;
  • исполнение;
  • тип изделия;
  • группа диаметров;
  • посадочный диаметр.

Кстати, важно понимать, что на территории нашей страны применяют две системы обозначения подшипников – ГОСТ и ISO.

Пример расшифровки маркировки на подшипниках

Маркировка может быть нанесена на одно из колец. Если подшипник закрытого типа то маркировку наносят на уплотнение или защитном кольце.

Классы точности подшипников

Класс точности подшипника – это показатель, который характеризует максимальные отклонения значения размеров подшипника от номинала.

В некоторых устройствах при выборе подшипника потребитель руководствуется ценой на него, а остальные параметры для него не так критичны. В некоторых других случаях потребитель выбирает подшипник исходя из предельной скорости вращения, при которой не будут, проявляются такие явления, как вибрация и пр. Такие довольно жесткие условия предъявляются к изделиям, работающим на транспорте, станочным узлам, робототехнических комплексов.

В машиностроении существует зависимость между точностью обработки и ее стоимостью. То есть, чем точнее деталь, тем больше ее конечная цена.

Разделение подшипников по точности позволяет подобрать такое изделие, которое будет отвечать требованиям, которые предъявляет проектировщик и в то же время с приемлемой для потребителя ценой.

Класс точности описывает точность производства изделий. Для регулировки этого параметры существуют нормативы, определенные в ГОСТ и ISO. В них определены допуски на все размеры – диаметры, ширину, фаски и пр.

Назначение подшипников качения

Подшипники качения предназначены для поддержки вращающихся валов. Они нашли свое применение в машинах, разного типа, например, в подъемно-транспортных устройствах, технике, применяемой в сельском хозяйстве, судовых двигателях.

Магнитные подшипники

Магнитные подшипники, которые все чаще применяют в различных машинах и механизмах работает на основании принципа магнитной левитации. В результате реализации этого принципа в подшипниковой опоре отсутствует контакт между валом и корпусом подшипника. Существуют активное исполнение и пассивное.

Активные изделия уже в массовом производстве. Пассивные, пока еще находятся на стадии разработки. В них, для получения постоянного магнитного поля применяют постоянные магниты типа NdFeB.

Использование магнитных подшипников предоставляет потребителю следующие преимущества:

  • высокая износостойкость подшипникового узла;
  • применение таких изделий, возможно, в агрессивных средах в большом диапазоне внешней температуры.

Бесконтактный магнитный подшипник

В то же время использование таких узлов влечет за собой некоторые сложности, в частности:

В случае пропадания магнитного поля, механизм неизбежно понесет повреждения. Поэтому для бесперебойной и безаварийной работы проектировщики применяют так называемые страховые подшипники. Как правило, в качестве страховочных применяют подшипники качения. Но они в состоянии выдержать несколько отказов системы, после этого требуется их замена, так будут изменены их размеры.

Создание постояннодействующего, а главное, устойчивого, магнитного поля сопряжено с созданием больших и сложных систем управления. Такие комплексы вызывают сложности с ремонтом и обслуживанием подшипниковых узлов.

Излишнее тепловыделение. Оно обусловлено тем, что обмотка нагревается в результате прохождения через нее электрического тока, в некоторых случаях, такой нагрев недопустим и поэтому приходится устанавливать системы охлаждения, что, разумеется, приводит к усложнению и удорожанию конструкции.

Где используются устройства скольжения

На самом деле сложно найти механизм, в котором не установлены подшипники скольжения. Даже на атомных подводных лодках, на подшипниках этого типа устанавливают гребные валы. Подшипники скольжения нашли широкое применение в станкостроении. В частности, в них устанавливают валы, по которым перемещается суппорт, резцедержатель и другие составные части станка.

Классификация подшипников качения

К подшипникам качения относят:

  • шариковые;
  • роликовые,
  • упорные и многие другие.

Все они характеризуются высокими параметрами износостойкости и возможностью работы в условиях разнонаправленных нагрузок – осевых и радиальных.

Характеристики подшипников качения

К основным характеристикам подшипников качения можно отнести следующие:

Угловая скорость, подшипники качения могут показывать высокие значении этой скорости, особенно если сепараторы выполнены из цветного металла или полимеров.

Перекос вала. Допустимо то, что перекос может достигать от 15’ до 30’. Кроме того, подшипники качения способны воспринимать небольшие осевые усилия. Она не должна превышать 70% от неиспользуемой радиальной грузоподъемности.

Подшипники качения показывают минимальные потери на трение.

Каталог импортных подшипников FAG, INA, SKF, NSK, TIMKEN и др.

В мировой экономике подшипниковая отрасль занимает отдельное место, во много это обусловлено значимостью продукции ей выпускаемой.

В нашей стране такую продукцию выпускают на специализированных подшипниковых заводах. Но, в последнее время существенно увеличен импорт подшипников из рубежа. Их поставляют из разных стран мира – США, КНР, Германии и пр.

Для ознакомления с номенклатурой поставляемой продукции достаточно ознакомиться с каталогами подшипников, которые предлагают потребителям зарубежные производители — FAG, INA, SKF, NSK, TIMKEN и многие другие. Достаточно одного взгляда и можно понять всю величину номенклатуры предлагаемых подшипников.


Подшипники TIMKEN

Но при заказе импортной продукции необходимо понимать, что подшипники, поступающие из-за границы, должны соответствовать требованиям наших нормативов и иметь документы, подтверждающие их качество и безопасность в эксплуатации. Подшипники очень часто поделывают. Рекомендуем покупать подшипники только у авторизированных поставщиков.

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели , подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на-стоящее время немыслимы без подшипников качения.

Подшипники качения состоят из двух колец — внутреннего 1 и наруж-ного 3, тел качения 2 (шариков или роликов) и сепаратора 4 (рис. 16, а). В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела каче-ния — шарики или ролики, установленные между кольцами и удерживае-мые сепаратором на определенном расстоянии друг от друга.

Материалы. Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC 60...65, а у шариков немного больше - HRC 62... 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс.

Для обеспечения нормальной и долговечной работы подшипников ка-чения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.

Подшипники качения — это опоры вращающихся или качающихся де-талей. Подшипники качения в отличие от подшипников скольжения стан-дартизованы. Подшипники качения различных конструкций (диапазон на-ружных диаметров 1,0-2600 мм, масса 0,5-3,5 т, например, микроподшип-ники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.

Выпускаемые в СНГ подшипники качения классифицируют по способности воспринимать нагрузку — радиальные, радиально-упорные, упор-но-радиальные и упорные.

Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники; и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело ка-чения; 3 — наружное кольцо; 4— сепаратор

Радиальные подшипники (см. рис. 16, а-е) воспринимают (в основ-ном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.


Упорные подшипники (см. рис. 16, и, к) воспринимают только осе-вую нагрузку.

Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшип-ники могут одновременно воспринимать как радиальную, так и осевую на-грузку. При этом упорно-радиальные подшипники предназначены для пре-обладающей осевой нагрузки.

В зависимости от соотношения размеров наружного и внутреннего диа-метров, а также ширины подшипники делят на серии: сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую.

В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.

По классам точности подшипники различают следующим образом:

"0" - нормального класса;

"6" - повышенной точности;

"5" - высокой точности;

"4" - особовысокой точности;

"2" - сверхвысокой точности.

При выборе класса точности подшипника необходимо помнить о том, что "чем точнее, тем дороже".

По форме тел качения подшипники делят на шариковые (см. рис. 16, а, б, ж, и), с цилиндрическими роликами (см. рис. 16, в), с кониче-скими роликами (см. рис. 16, з, к), игольчатые (см. рис. 16, д), с витыми роликами (см. рис. 16, е), с бочкообразными роликами (сферическими) (см. рис. 16, г). Тела качения игольчатых подшипников тонкие ролики — иглы диаметром 1,6-5 мм. Длина игл в 5-10 раз больше их диаметра. Се-параторы в игольчатых подшипниках отсутствуют.

По числу рядов тел качения различают однорядные (см. рис. 16, а, в, д-к) и двухрядные (см. рис. 16, б, г) подшипники качения.

По конструктивным и эксплуатационным признакам подшипники делят на самоустанавливающиеся (см. рис. 16, б, г) и несамоустанавливающиеся (см. рис. 16, а, в, д-к).

Под типом подшипника понимают его конструктивную разновидность, определяемую по признакам классификации.

Каждый подшипник качения имеет условное клеймо, обозначающее тип, размер, класс точности, завод-изготовитель.

На неразъемные подшипники клеймо наносят на одно из колец, на разборные — на оба кольца, например, на радиальный подшипник с ко-роткими цилиндрическими роликами (см. рис. 16, в), где наружное коль-цо без бортов и свободно снимается, а внутреннее кольцо с бортами со-ставляет комплект с сепаратором и роликами.

На один и тот же диаметр шейки вала предусматривается несколько серий подшипников, которые отличаются размерами колец и тел качения и соответственно величиной воспринимаемых нагрузок.

В пределах каждой серии подшипники равных типов взаимозаменяемы в мировом масштабе. В стандартах указываются: номер подшипника, размеры, вес, предельное число оборотов, статическая нагрузка и коэффициент работоспособности.

Первая и вторая цифры справа условно обозначают его номинальный внутренний диаметр d (диаметр вала). Для определения истинного размера d (в миллиметрах) необходимо указанные две цифры умножить на пять. Например, подшипник...04 имеет внутренний диаметр 04 . 5 = 20 мм. Это правило распространяется на подшипники с цифрами...04 и выше, до...99, т. е. для J = 20h - 495 mm. Подшипники с цифрами... 00 имеют d- 10 мм; ...01 d = 12 мм; ...02 d = 15 мм; ...03 d = 17 мм.

Третья цифра справа обозначает серию подшипника, определяя его на-ружный диаметр: 1 — особо легкая, 2 — легкая; 3 — средняя, 4 — тяжелая; 5 — легкая широкая, 6 — средняя широкая.

Четвертая цифра справа обозначает тип подшипника. Если эта цифра 0, то это означает, что подшипник радиальный шариковый одно-рядный; шариковый однорядный (если левее 0 нет цифр, то 0 не указыва-ют); 1 — радиальный шариковый двухрядный сферический; 2 — радиаль-ный с короткими цилиндрическими роликами; 3 — радиальный роликовый двухрядный сферический; 4 — игольчатый или роликовый с длинными ци-линдрическими роликами; 5 — роликовый с витыми роликами; 6 — радиально-упорный шариковый; 7 — роликовый конический (радиально-упорный); 8 — упорный шариковый; 9 — упорный роликовый.

Так, например, подшипник 7208 является роликовым коническим.

Пятая и шестая цифры справа характеризуют конструктивные особен-ности подшипника (неразборный, с защитной шайбой, с закрепительной втулкой и т. п.).

Например :

50312 — радиальный однорядный шарикоподшипник средней серии со стопорной канавкой на наружном кольце;

150312 — тот же подшипник с защитной шайбой;

36312 — радиально-упорный шариковый однорядный подшипник сред-ней серии, неразборный.

Седьмая цифра справа характеризует серию подшипника по ширине.

ГОСТом установлены следующие классы точности подшипников каче-ния: 0 — нормальный класс (как правило, 0 в обозначении не указывают); 6 — повышенный; 5 — высокий, 4 — особо высокий, 2 — сверхвысокий. Цифру, обозначающую класс точности, ставят слева от условного обозна-чения подшипника и отделяют от него знаком тире; например, 206 означа-ет шариковый радиальный подшипник легкой серии с номинальным диа-метром 30 мм, класса точности 0.

Кроме цифр основного обозначения слева и справа от него могут дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности маркируют цифрой слева через тире от основного обозначения. В порядке повышения точности классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемой цифрой 0 и соответствующей нормальной точности, не проставляют. В общим машиностроение применяют подшипники классов 0 и 6. в изделиях высокой точности или работающей высокой частотой вращения (шпиндельные узлы скоростных станков, высокооборотный электродвигатели и др.) применяют подшипники класса 5 и 4. подшипники класса точности 2 используют в гироскопических приборах.

Так, например, подшипник 7208 — класса точности 0.

Помимо приведенных выше имеются и дополнительные (более высокие и более низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и др. установлены три категории подшипников: А — повышенные регламентированные нормы; В — регламентированные нормы; С — без дополнительных требований.

Возможные знаки справа от основного обозначения: Е — сепаратор выполнен из пластических материалов; Р — детали подшипника из теп-лостойких сталей; С — подшипник закрытого типа при заполнении сма-зочным материалом и др.

Примеры обозначений подшипников:

311 — подшипник шариковый радиальный однорядный, средней серии диаметров 3, серии ширин 0, с внутренним диаметром d = 55 мм, основной конструкции (см. рис. 14.5, а), класса точности 0;

6-36209 — подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 45 мм, с углом контакта а = 12°, класса точности 6;

4-12210 — подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 50 мм, с одним бортом на наружном кольце (см. рис. 14.9, б), класса точности 4;

4-3003124Р — подшипник роликовый радиальный сферический двухрядный особолегкой серии диаметров 1, серии ширин 3, с внутренним диаметром d = 120 мм, основной конструкции (см. рис. 14.8), класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Характеристики подшипников качения.

Наибольшее распространение получили шариковые радиальные одноряд-ные подшипники (см. рис. 16, а). Эти подшипники допускают сравнительно большую угловую скорость, особенно с сепараторами из цветных металлов или из пластмасс, допускают небольшие перекосы вала (от 15" до 30") и могут воспринимать незначительные осевые нагрузки. Допустимая осевая нагрузка для радиальных несамоустанавливающихся подшипников не должна превы-шать 70% от неиспользованной радиальной грузоподъемности подшипника.

Роликовые радиальные подшипники с короткими роликами (см. рис. 16, в) по сравнению с аналогичными по габаритным размерам шари-коподшипниками обладают увеличенной грузоподъемностью, хорошо вы-держивают ударные нагрузки. Однако они совершенно не воспринимают осевых нагрузок и не допускают перекоса вала (ролики начинают работать кромками, и подшипники быстро выходят из строя).

Роликовые радиальные подшипники с витыми роликами (см. рис. 16, е) применяют при радиальных нагрузках ударного действия; удары смягчают-ся податливостью витых роликов. Эти подшипники менее требовательны к точности сборки и к защите от загрязнений, имеют незначительные ради-альные габаритные размеры.

Игольчатые подшипники (см. рис. 16, д) отличаются малыми радиаль-ными габаритными размерами, находят применение в тихоходных (до 5 м/с) и тяжелонагруженных узлах, так как выдерживают большие ради-альные нагрузки. В настоящее время их широко используют для замены подшипников скольжения. Эти подшипники воспринимают только радиальные нагрузки и не допускают перекоса валов. Для максимального уменьшения размеров применяют подшипники в виде комплекта игл, не-посредственно опирающихся на вал, с одним наружным кольцом.

Самоустанавливающиеся радиальные двухрядные сферические шариковые (рис. 16, б) и роликовые (см. рис. 16, г) подшипники применяют в тех слу-чаях, когда перекос колец подшипников может составлять до 2—3°. Эти под-шипники допускают незначительную осевую нагрузку (порядка 20% от не-использованной радиальной) и осевую фиксацию вала. Подшипники имеют высокие эксплуатационные показатели, но они дороже, чем однорядные.

Конические роликоподшипники (см. рис. 16, з) находят примене-ние в узлах, где действуют одновременно радиальные и односторонние осевые нагрузки. Эти подшипники могут воспринимать также и ударные нагрузки. Радиальная грузоподъемность их в среднем почти в 2 раза выше, чем у радиальных однорядных шарикоподшипников. Их рекомендуется ус-танавливать при средних и низких угловых скоростях вала (до 15 м/с).

Аналогичное использование имеют радиально-упорные шарикоподшипники (см. рис. 16, ж), применяемые при средних и высоких угловых скоростях. Радиальная грузоподъемность у этих подшипников на 30-40 % больше, чем у радиальных однорядных. Их выполняют разъемными со съемным на-ружным кольцом и неразъемными.

Шариковые и роликовые упорные подшипники (см. рис. 16, и. к) предназначены для восприятия односторонних осевых нагрузок. Применя-ются при сравнительно невысоких угловых скоростях, главным образом на вертикальных валах. Упорные подшипники радиальную нагрузку не вос-принимают. При необходимости установки упорных подшипников в узлах, где действуют не только осевые, но и радиальные нагрузки, следует допол-нительно устанавливать радиальные подшипники.

В некоторых конструкциях, где приходится бороться за уменьшение радиальных габаритов, применяются т.н. "бескольцевые" подшипники, когда тела качения установлены непосредственно между валом и корпусом. Однако нетрудно догадаться, что такие конструкции требуют сложной, индивидуальной, а, следовательно, и дорогой сборки-разборки.

Достоинства подшипников качения:

- низкое трение, низкий нагрев;

Экономия смазки;

Высокий уровень стандартизации;

Экономия дорогих антифрикционных материалов.

Недостатки подшипников качения:

- высокие контактные напряжения, и поэтому ограниченный срок службы;

- высокие габариты (особенно радиальные) и вес;

Высокие требования к оптимизации выбора типоразмера;

Большая чувствительность к ударным нагрузкам вследствие большой жесткости конструкции;

Повышенный шум;

Слабая виброзащита, более того, подшипники сами являются генераторами вибрации за счёт даже очень малой неизбежной разноразмерности тел качения.

Подшипник, согласно ГОСТ 24955-81 - опора, определяющая положение движущихся частей механизма относительно других частей.

В зависимости от характера взаимодействия подвижных и неподвижных элементов подшипника различают и качения.

Рассмотрим подробнее устройство, разновидности, особенности подшипников качения.

Классификация подшипников качения

В зависимости от формы тел качения различают подшипники:

  • Шариковые
  • Роликовые
    • с цилиндрическими роликами
    • с коническими роликами
    • с бочкообразными роликами
    • с витыми роликами
    • с игольчатыми роликами

По числу рядов различают подшипники:

  • однорядные
  • двурядные
  • четырехрядные

По возможности самоустановки:

  • несамоустанавливающиеся
  • сферические самоустанавливающиеся

По направлению воспринимаемой нагрузки:

  • радиальные
  • упорные
  • радиально-упорные

Устройство подшипников качения


В общем случае подшипник качения состоит из наружного 1 и внутреннего 1 кольца, на которых могут быть выполнены беговые дорожки (канавки). Между кольцами расположены тела качения 3 (шарики, ролики). Для базирования тел качения внутри подшипника используется сепаратор. Внутренне кольцо устанавливается на валу, наружное - в корпусе (опоре).

Передача усилий от вала на опоры осуществляется через тела качения.

Осевые и радиальные нагрузки

В зависимости от типа, подшипники способны воспринимать радиальные и осевые нагрузки.

Радиальной называют нагрузку, направленную в радиальном направлении, то есть от центра к наружному диаметру.

Осевой называют нагрузку, действующую в направлении оси вала.


Основные типы подшипников

Типы и конструктивные исполнения подшипников стандартизованы в ГОСТ 3395-89.

Шарикоподшипники

Телом качения в подшипниках данного типа являются шарики, их контакт в идеальном случае - точечный. Шариковые подшипники более быстроходны, чем роликовые.

Однорядные радиальные шариковые подшипники

Подшипники этого типа предназначены для восприятия нагрузки в радиальном направлении.

За счет размещения шариков в желобе шариковые подшипники способны воспринимать кратковременную осевую нагрузку.

Благодаря точечному контакту между обоймой е телами качения подшипник обладает наименьшим трением и подходит для высоких частот вращения.

Двухрядные радиальные шариковые подшипники

Обладают повышенной грузоподъемностью по сравнению с однорядными подшипниками, но требуют более точной установки.

Двухрядные шариковые сферические подшипники

Самоустанавливающиеся подшипники, применяют в конструкциях где возможны смещения осей подшипников друг относительно друга или в случае отсутсвия возможности обеспечения соосности подшипников.

Обладают меньшей грузоподъемностью по сравнению с несамоустанавливающимися шариковыми подшипниками.

Шариковые радиально-упорные подшипники

Радиально-упорные подшипники предназначены для восприятия как осевых, так и радиальных усилий.

Одиночную установку шарикового радиально-упорного подшипника применяют редко, только в том случае если осевая нагрузка всегда действует только в одном направлении. Обычно шариковые радиально-упорные подшипники устанавливают парно, с затяжкой внутренних или внешних обойм.

Однорядные шариковые упорные подшипники

Предназначены для восприятия осевой нагрузки, действующей в одном направлении. Радиальную нагрузку воспринимать не могут.

Двухрядные шариковые упорные подшипники

Способны воспринимать осевую нагрузку, действующую в обоих направлениях. Частота вращения ограничена величиной центробежных сил, под действием которых шарики могут смещаться за пределы беговых канавок.

Упорно-радиальные шариковые подшипники

Способны воспринимать, как осевые, так и радиальные нагрузки.

Роликоподшипники

Телом качения в подшипниках этого типа являются ролики, поверхности ролика и обоймы контактируют по линии (если считать их абсолютно твердыми). Роликовые подшипники обладают большей грузоподъемностью, чем шариковые.

Радиальные роликовые подшипники

Роликовые подшипники данного типа способны воспринимать высокую нагрузку в радиальном направлении. Их несущая способность в 1,5 - 2 раза выше, чем у шариковых подшипников тех же размеров.

Подшипники с длинными роликами отличаются меньшими габаритами в радиальном направлении и большей несущей способностью.

Подшипники с витыми роликами обладают меньшей несущей способностью, но повышенной упругостью.

Игольчатые подшипники

Особый вид роликовых подшипников с длинными роликами малого диаметра. Игольчатые подшипники предназначения для восприятия очень высоких радиальных нагрузок при небольших частотах вращения.

Двурядные подшипники с бочкообразными роликами

Самоустанавливающиеся роликовые подшипники. Отличаются от шариковых сферических повышенной грузоподъемностью как в радиальном так и в осевом направлении.

Конические радиально упорные подшипники

Конические подшипники используют при высоких радиальных и осевых нагрузках. Угол конуса наружной беговой дорожки составляет 20-30 градусов. Осевое усилие вызывает высокие нагрузки на ролики.

Частота вращения конических подшипников ограничена, они требуют точно установки, для чего могут использоваться регулировочные шайбы, прокладки.

Увеличение угла конуса наружной беговой дорожки позволяет увеличить допускаемую осевую нагрузку.

Упорные подшипники с цилиндрическими роликами

Состоят из колец, роликов и центрирующего сепаратора. Упорные цилиндрические подшипники применяют при низких частотах вращения и высоких нагрузках.

Упорные с коническими роликами

Телом качения являются ролики, вершины которых сходятся на оси подшипника.

Сфероконические упорные

Самоустанавливающиеся подшипники, предназначенные для работы с большими радиальными и осевыми нагрузками. Профили тел качения - бочкообразные.

Обозначение подшипников качения

Рассмотрим обозначения стандартизированных подшипников.

Обозначение подшипников по ГОСТ

Правила обозначения стандартных подшипников качения указаны в ГОСТ 3189-89. Подшипники шариковые и роликовые. Система условных обозначений .

Обозначение состоит из набора цифр, каждая из которых указывает на ту или иную техническую характеристику.

Для обозначений подшипников с внутренним диаметром до 10 мм используется следующая схема:


Подшипники с внутренним диаметром более 10 мм обозначают следующим образом:


Расшифровку обозначения удобно проводить справа налево.

Первые две цифры справа обозначают внутренний диаметр подшипник. Для подшипников с внутренним диаметром от 20 до 495 мм указывается цифра диаметра, разделенная на 5. Для подшипников с диаметром меньше 10 указывается одна цифра , соответствующая внутреннему диаметру.

Для подшипников с внутренним диаметром от 10 до 20 указываются следующие цифры.

Диаметр отверстия подшипника, мм Обозначение
10 00
12 01
15 02
17 03

Третья цифра для подшипников с диаметром больше 10 указывает на серию диаметров. При внутреннем диаметре меньше 10 третей цифрой указывается 0.

Четвертая цифра обозначает тип подшипника.

  • 0 радиальный шариковый однорядный
  • 1 радиальный шариковый двурядный сферический
  • 2 радиальный с короткими цилиндрическими роликами
  • 3 радиальный роликовый двурядный сферический
  • 4 роликовый с длинными или игольчатыми роликами
  • 5 роликовый свитыми роликами
  • 6 радиально-упорный шариковый
  • 7 роликовый конический
  • 8 упорный шариковый
  • 9 упорный роликовый

Пятая и шестая цифра указывает на конструктивные особенности подшипника.

Конструктивные исполнения подшипников указаны в ГОСТ 3395 Подшипники качения. Типы и конструктивные исполнения Седьмая цифра справа обозначают серию по ширине:

  • узкие
  • нормальные
  • широкие
  • особо широкие

Нули в левой части обозначения могут опускаться (не указываться).

Примеры обозначения подшипников по ГОСТ

Рассмотрим пример обозначения радиального шарикоподшипника с внутренним диаметром 30 мм, сверхлегкой серии диаметров 9, нормальной серии ширин 1.

  • Первые две цифры справа 30/5=06
  • Третья цифра - серия диаметров - 9
  • Четвертая цифра справа для шарикового радиального однорядного подшипника - 0
  • Пятая и шестаяя цифра
  • Седьмая цифра справа - серия ширин - 1

Получается, что обозначение данного подшипника - 1000906.

Расшифруем обозначение подшипника 2007108 , расшифровку будем проводить справа налево.

  • 08 - цифра указывает на внутренний диаметр подшипника, поделенный на 5, значит диаметр кольца подшипника - 08*5=40мм
  • 1 - серия диаметров 1
  • 7 - роликовый конический
  • 00 - без конструктивных особенностей
  • 2 - серия ширин 2

Получается, что обозначение 2007108 имеет роликовый конический подшипник серии диаметров 1, серии ширин 2.

Рассмотрим обозначение подшипника с диаметром меньше 10 - 1000088.

  • 8 - диаметр подшипника меньше 10 мм, цифра обозначает внутренний диаметр подшипника 8 мм.
  • 8 - серия диаметров 8
  • 0 - третья цифра 0, при обозначении подшипников с внутренним диаметром меньше 10
  • 00 - без конструктивных особенностей
  • 1 - серия ширин 1

Подшипник 107, для расшифровки удобнее записать 0 00 0 107.

  • 07 - внутренний диаметр 35
  • 1 - серия диаметров 1
  • 0 - шариковый радиальный однорядный
  • 00 - без конструктивных особенностей
  • 0 - серия ширин 0

Обозначение подшипников по ISO/DIN

Обозначение импортных подшипников основано на тех же принципах, что и обознчаение по ГОСТ.


Если расшифровывать обозначение справа налево, первая цифра (или первые две цифры) указывает на внутренний диаметр. Для подшипников с внутренним диаметром от 20 до 495 мм указывается цифра диаметра, разделенная на 5.

Для подшипников с диаметром меньше 10 указывается одна цифра, соответствующая внутреннему диаметру. Соответствие цифр диаметрам подшипников от 10 до 20 указано в таблице.

Вторая справа цифра указывает на серию ширин, третья - серия диаметров, четвертая - тип подшипника:

  • 0 - шариковые радиально-упорные
  • 1 - шариковые сферические
  • 2 - роликовые сферические
  • 3 - роликовые конические
  • 4 - шариковые радиальные двурядные
  • 5 - шариковые упорные
  • 6 - шариковые радиальные однорядные
  • 7 - шариковые радиально-упорные
  • 8 - роликовые цилиндрические упорные
  • C - роликовые тороидальные
  • N - роликовые цилиндрические
  • QJ - шариковые с четырехточечным контактом
  • T - роликовые конические по ISO 35

После обозначения может указываться суффикс, свидетельствующий о наличии конструктивных особенностей, например:

  • Z - наличие защитного кольца с одной стороны
  • ZZ - Наличие защитного кольца с двух сторон

Перед базовым обозначением может находится префикс, указывающий на тип и профиль подшипника, например:

  • H - высокоскоростной
  • HS - сверхскоростной

Достоинства подшипников качения

  • Низкое трение, и как следствие меньший нагрев, и более мягкие требования к смазке, по сравнению с подшипниками скольжения
  • Малые габариты в осевом направлении
  • Возможность работы в широком диапазоне температур
  • Стандартизированы, взаимозаменяемы

Недостатки подшипников качения

  • Требуются минимальные
  • Большие габариты в радиальном направлении
  • Шум при работе
  • Долговечность резко снижается при увеличении нагрузки

Подшипник. Навряд ли человечество способно изобрести еще более эффективное устройство для уменьшения трения, возникающего, как результат воздействия силы качения, вращения или линейного перемещения. Именно поэтому, подшипники встречаются в сотнях тысяч механизмов, и столь разнообразны по своему виду, форме, конфигурации. Сложно найти машину или механизм, применяемый на производстве и в промышленности, где не применялись бы подшипники. Они являются одним из базовых элементов, используемых в конструкции большинства из механизмов: от автомобильного и сельскохозяйственного транспорта, до машин для обработки металла и дерева и стиральных машин.

Фактически, подшипники это опорные кинематические механизмы, которые применяются для определения взаиморасположения мобильных элементов конструкций механизмов. Кроме этого, подшипники обеспечивают эффективное перемещение этих элементов по отношению друг к другу.

Какими бывают подшипники

Виды сборочных узлов (подшипников) классифицируют в зависимости от их конструктивных особенностей. Основными элементами подшипника являются:

  • Кольца (наружное и внутреннее).
  • Тела качения (разной конфигурации).
  • Разделитель-сепаратор - часть, предназначенная для удерживания и разделения шариков или роликов.

Подшипники принято различать по нескольким параметрам. В первую очередь, это механизм их работы: скольжение или качение. Следующим принципом классификации стал образ тела качения.

В качестве тел качения применяют:

  • шарики - эти подшипники называют шариковыми, и применяются они во многих механизмах. Шарикоподшипники бывают: радиальными, радиально-упорными, упорными и шарикоподшипники с четырехточечным контактом.
  • ролики - роликовые подшипники чуть менее распространенная конструкция. Существуют роликово-цилиндрические, роликово-конические и роликово-игольчатые модификации. Каждый из видов подшипника применяется в определенной области, и если Вам необходимо выбрать какой-либо определенный подшипник, то делайте это в зависимости от его предназначения.

Современный рынок предлагает самые разнообразные подшипники, и крайне важно не только найти необходимую модификацию, но и быть уверенным в ее качестве. Увы, подшипники китайского производства не способны продемонстрировать высокое качество и долговечность. Поэтому, рекомендуем Вам обратить внимание на продукцию компании, которая стояла у истоков изобретения подшипников, шведскую компанию AB SKF, имеющую в Украине завод полного цикла, и парочку конструкторских бюро, uzp.net.ua. SKF подшипники прослужат Вам долго, и не подведут в самый ответственный момент.

Где применяют подшипники

Как мы уже упоминали выше, в зависимости от модификации, подшипники применяют в различных областях.

Например, шариковые подшипники применяют в механизмах:

  1. электродвигателей;
  2. бытовой техники работающей на электричестве;
  3. редукторов;
  4. станков для деревообработки;
  5. насосов;
  6. коробки передач, стартере и ступицах автомобиля.

И многих-многих других механизмах, где необходима высокая скорость вращения. Роль роликовых цилиндрических подшипников несколько иная. Их основная задача нести серьезные нагрузки перпендикулярно валу (радиальные нагрузки). Их можно встретить в механизмах:

  1. гигантских электродвигателей;
  2. осевых буксах ж/д транспортных средств;
  3. устройств для резки металла;
  4. насосных механизмов;

Роликовые конические подшипники используются в тех случаях, когда особенно важно восприятие комбинированных нагрузок (т.е., как радиальных, так и осевых). Их в основном применяют в механизмах железнодорожного, сельскохозяйственного и легкового транспорта. Роликовые игольчатые подшипники чаще всего используются в предметах, которые мы регулярно применяем в быту. Иголки, выполняющие в них роль тел качения, позволяют существенно уменьшить размеры, и общую стоимость, сохраняя при этом солидную несущую способность. Вы обязательно найдете роликовые игольчатые подшипники в механизмах:

  1. моторных лодок;
  2. автомобиля - ДВС (двигателя внутреннего сгорания), тормозной системы;
  3. печатно-копировальной техники;
  4. электрических инструментов.

Найти подходящий подшипник достаточно легко. Главное знать для чего он предназначен, и в каких условиях ему предстоит функционировать.

Основные типы подшипников

По принципу работы все подшипники можно разделить на несколько типов:

  • подшипники качения;
  • подшипники скольжения;
  • газодинамические подшипники;
  • гидростатические подшипники;
  • гидродинамические подшипники;
  • магнитные подшипники.

Основные типы, которые применяются в машиностроении - это подшипники качения и подшипники скольжения .

Подшипники качения

Устройство однорядного радиального шарикоподшипника:
1) внешнее кольцо; 2) шарик (тело качения); 3) сепаратор; 4) дорожка качения; 5) внутреннее кольцо.

Подшипники качения различных размеров и конструкций

Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба - дорожки качения, по которым при работе подшипника катятся тела качения.

В некоторых узлах машин в целях уменьшения габаритов, а также повышения точности и жёсткости применяют так называемые совмещённые опоры: дорожки качения при этом выполняют непосредственно на валу или на поверхности корпусной детали.

Имеются подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большое число тел качения и большую грузоподъёмность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

В подшипниках качения возникает преимущественно трение качения (имеются только небольшие потери на трение скольжения между сепаратором и телами качения), поэтому по сравнению с подшипниками скольжения снижаются потери энергии на трение и уменьшается износ. Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые - чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника.

Классификация

Классификация подшипников качения осуществляется на основе следующих признаков:

Механика

Подшипник представляет собой по существу планетарный механизм , в котором водилом является сепаратор, функции центральных колес выполняют внутреннее и наружное кольца, а тела качения заменяют сателлиты.

Частота вращения сепаратора или частота вращения шариков вокруг оси подшипника

где n 1 - частота вращения внутреннего кольца радиального шарикоподшипника,
D ω - диаметр шарика,
d m = 0,5(D+d) - диаметр окружности осей шариков.

Частота вращения шарика относительно сепаратора

Частота вращения сепаратора при вращении наружного кольца

где n 3 - частота вращения внешнего кольца радиального шарикоподшипника.

Для радиально-упорного подшипника

Из приведенных выше соотношений следует, что при вращении внутреннего кольца сепаратор вращается в ту же сторону. Частота вращения сепаратора зависит от диаметра D ω шариков при неизменном d m: она возрастает при уменьшении D ω и уменьшается при увеличении D ω .

В связи с этим разноразмерность шариков в комплекте подшипника является причиной повышенного износа и выхода из строя сепаратора и подшипника в целом.

При вращении тел качения вокруг оси подшипника на каждое из них действует нагружающая дополнительно дорожку качения наружного кольца центробежная сила

где m - масса тела качения,
ω с - угловая скорость сепаратора.

Центробежные силы вызывают перегрузку подшипника при работе на повышенной частоте вращения , повышенное тепловыделение (перегрев подшипника) и ускоренное изнашивание сепаратора. Всё это сокращает срок службы подшипника.

В упорном подшипнике, кроме центробежных сил, на шарики действует обусловленный изменением направления оси вращения шариков в пространстве гироскопический момент

Гироскопический момент будет действовать на шарики и во вращающемся радиально-упорном шарикоподшипнике при действии осевой нагрузки

где - полярный момент инерции массы шарика;
ρ - плотность материала шарика;
ω sp и ω с - соответственно угловая скорость шарика при вращении вокруг своей оси и вокруг оси вала (угловая скорость сепаратора).

Под действием гироскопического момента каждый шарик получает дополнительное вращение вокруг оси, перпендикулярной плоскости, образованной векторами угловых скоростей шарика и сепаратора. Такое вращение сопровождается изнашиванием поверхностей качения, и для предотвращения вращения подшипник следует нагружать такой осевой силой, чтобы соблюдать условие , где T f - момент сил трения от осевой нагрузки на площадках контакта шариков с кольцами.

Условное обозначение подшипников качения в России

Подшипники с российской маркировкой на выставке.

Чашечные подшипники, шарикоподшипники специального назначения и шарикоподшипниковые узлы.

Маркировка подшипников состоит из условного обозначения и стандартизована в соответствии ГОСТ 3189-89 и условного обозначения завода-изготовителя.

Основное условное обозначение подшипника состоит из семи цифр основного условного обозначения (при нулевых значениях этих признаков оно сокращается до 2 знаков) и дополнительного обозначения, которое располагается слева и справа от основного. При этом дополнительное обозначение, расположенное слева от основного, всегда отделено знаком тире (-), а дополнительное обозначение, расположенное справа всегда начинается с какой-либо буквы. Чтение знаков основного и дополнительного обозначения производится справа налево.

Схема 1 основного условного исполнения для подшипников с диаметром отверстия до 10 мм, кроме подшипников с диаметрами отверстий 0,6, 1,5 и 2,5 мм, которые обозначаются через дробь.

X XX X 0 X X
6 5 4 3 2 1
  1. диаметр отверстия, один знак;
  2. серия диаметров, один знак;
  3. знак ноль;
  4. тип подшипника, один знак;

Схема 2 основного условного исполнения для подшипников с диаметром отверстия от 10 мм и выше, кроме подшипников с диаметрами отверстий 22, 28, 32 и 500 мм, обозначаемые через дробь.

X XX X X XX
5 4 3 2 1
  1. диаметр отверстия, два знака;
  2. серия диаметров, один знак;
  3. тип подшипника, один знак;
  4. конструктивное исполнение, два знака;
  5. размерная серия (серия ширин или высот), один знак.

Знаки условного обозначения:

  • материал деталей;
  • конструктивные изменения;
  • температура отпуска;
  • смазочный материал;
  • требования к уровню вибрации.

Обозначение диаметра отверстия

Знак обозначающий диаметр отверстия схемы 1 с диаметром отверстия до 10 мм должен быть равен номинальному диаметру отверстия, кроме подшипников с диаметрами отверстий 0,6, 1,5 и 2,5 мм, которые обозначаются через дробь. Если диаметр отверстия подшипника - дробное число, кроме величин перечисленных ранее, то он имеет обозначение диаметра отверстия округлённого до целого числа, в этом случае в его условном обозначении на втором месте должна стоять цифра 5. Двухрядные сферические радиальные подшипники с диаметром отверстия до 9 мм сохраняют условное обозначение по ГОСТ 5720 .

Два знака обозначающие диаметр отверстия схемы 2 с диаметром отверстия от 10 мм до 500 мм если диаметр кратен 5, обозначаются частным от деления значения диаметра на 5.

Обозначение подшипников с диаметром отверстия 10, 12, 15 и 17 как 00, 01, 02, 03 соответственно. Если диаметр отверстия в диапазоне от 10 до 19 мм отличается от 10, 12, 15 и 17 мм, то ему присваивается обозначение ближайшего из указанных диаметров, при этом на третьем месте основного обозначения ставится цифра 9.

Диаметры отверстий 22, 28, 32 и 500 мм, обозначаются через дробь (например: 602/32 (д=32мм)

Диаметры отверстия, равные дробному или целому числу, но не кратное 5, обозначаются целым приближенным частным от деления значения диаметра на 5. В основное условное обозначение таких подшипников на третьем месте ставится цифра 9.

Подшипники имеющие диаметр отверстия 500 мм и более, внутренний диаметр обозначается как номинальный диаметр отверстия.

Обозначение размерных серий

Размерная серия подшипника - сочетание серий диаметров и ширин (высот), определяющее габаритные размеры подшипника. Для подшипников установлены следующие серии (ГОСТ 3478 ):

  • диаметров 0, 8, 9, 1, 7, 2, 3, 4, 5;
  • ширин и высот 7, 8, 9, 0, 1, 2, 3, 4, 5, 6.

Перечень серий диаметров указан в порядке увеличения размера наружного диаметра подшипника при одинаковом внутреннем диаметре. Перечень серий ширин или высот указан в порядке увеличения размера ширины или высоты.

Серия 0 в обозначении не указывается.

Нестандартные подшипники по внутреннему диаметру или ширине (высоте) имеют обозначение серии диаметра 6, 7или 8. Серия ширин (высот) в этом случае не проставляется.

Обозначение типов подшипников

Типы подшипников обозначаются согласно таблице 1 .

Таблица 1

Обозначение типов подшипников.
Тип подшипника Обозначение
Шариковый радиальный 0
Шариковый радиальный сферический 1
Роликовый радиальный с короткими цилиндрическими роликами 2
Роликовый радиальный сферический 3
Роликовый игольчатый или с длинными цилиндрическими роликами 4
Радиальный роликовый с витыми роликами 5
Радиально-упорный шариковый 6
Роликовый конический 7
Упорный или упорно-радиальный шариковый 8
Упорный или упорно-радиальный роликовый 9

Обозначение конструктивного исполнения

Конструктивные исполнения для каждого типа подшипников, согласно ГОСТ 3395 , обозначают цифрами от 00 до 99.

Знаки дополнительного обозначения

Слева от основного обозначения ставят знаки:

  • класс точности по ГОСТ 520-89 в порядке повышения точности:

0, 6, 5, 4, 2, Т - для шариковых и роликовых радиальных и шариковых радиально-упорных подшипников;
0, 6, 5, 4, 2 - для упорных и упорно-радиальных подшипников;
0, 6Х, 6, 5, 4, 2 - для роликовых конических подшипников.
Установлены также дополнительные классы точности 8 и 7 - ниже класса точности 0, изготовляются по заказу потребителей для применения в неответственных узлах.

  • группа радиального зазора по ГОСТ 24810-81 (1, 2…9; для радиально-упорных шариковых подшипников обозначают степень преднатяга 1, 2, 3);
  • момент трения (1, 2…9);
  • категорию подшипников (А, В, С).

Справа от основного обозначения ставят знаки:

  • материал деталей подшипников (например, Е - сепаратор из пластических материалов, Ю - детали подшипников из нержавеющей стали , Я - подшипники из редко применяемых материалов (твёрдые сплавы , стекло , керамика и т. д.), W - детали подшипников из вакуумированной стали, А - обозначение подшипника повышенной грузоподъёмности, Х,Х1 - кольца и тела качения или только кольца (в том числе одно кольцо) из цементируемой стали, Р,Р1 - детали подшипников из теплостойких (быстрорежущих сталей), Г,Г1 - сепаратор из чёрных металлов , Б,Б1 - сепаратор из безоловянистой бронзы , Д,Д1 - сепаратор алюминиевого сплава , Н,Н1 - кольца и тела качения или только кольца (в том числе одно кольцо) из модифицированной жаропрочной стали (кроме подшипников радиальных роликовых сферических двухрядных), Э,Э1 - детали подшипника из стали марки ШХ со спецприсадками (ванадий , кобальт и др.).
  • конструктивные изменения (например, К - конструктивные изменения деталей подшипников, М - роликовые подшипники с модифицированным контактом);
  • требования к температуре отпуска (Т, Т1, Т2, Т3, Т4, Т5);
  • смазочный материал закладываемый в подшипники закрытого типа при их изготовлении (например, С1, С2, С3 и т. д.);
  • требования по уровню вибрации (например, Ш1, Ш2, ШЗ и т. д.).

Подшипники скольжения

Коренной подшипник скольжения, коленвала двигателя с заливкой баббитом.

Подшипник скольжения - опора или направляющая механизма или машины, в которой трение происходит при скольжении сопряжённых поверхностей. Радиальный подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется рабочий элемент - вкладыш, или втулка из антифрикционного материала и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, заполненный смазочным материалом, который позволяет свободно вращаться валу. Расчёт зазора подшипника, работающего в режиме разделения поверхностей трения смазочным слоем, производится на основе гидродинамической теории смазки .

При расчёте определяются: минимальная толщина смазочного слоя (измеряемая в мкм), давления в смазочном слое, температура и расход смазочных материалов. В зависимости от конструкции, окружной скорости цапфы , условий эксплуатации трение скольжения бывает сухим , граничным , жидкостным и газодинамическим . Однако даже подшипники с жидкостным трением при пуске проходят этап с граничным трением.

Смазка является одним из основных условий надёжной работы подшипника и обеспечивает: низкое трение, разделение подвижных частей, теплоотвод, защиту от вредного воздействия окружающей среды и может быть:

  • жидкой (минеральные и синтетические масла , вода для не металлических подшипников),
  • пластичной (на основе литиевого мыла и кальция сульфоната и др.),
  • твёрдой (графит , дисульфид молибдена и др.) и
  • газообразной (различные инертные газы , азот и др.).

Наилучшие эксплуатационные свойства демонстрируют пористые самосмазывающиеся подшипники, изготовленные методом порошковой металлургии . При работе пористый самосмазывающийся подшипник, пропитанный маслом, нагревается и выделяет смазку из пор на рабочую скользящую поверхность, а в состоянии покоя остывает и впитывает смазку обратно в поры.

Антифрикционные материалы подшипников изготавливают из твёрдых сплавов (карбид вольфрама или карбид хрома методом порошковой металлургии либо высокоскоростным газопламенным напылением), баббитов и бронз , полимерных материалов , керамики , твёрдых пород дерева (железное дерево).

Классификация

В основу классификации положен анализ режимов работы подшипников по диаграмме Герси-Штрибека .

Подшипники скольжения разделяют:

  • в зависимости от формы подшипникового отверстия
    • одно- или многоповерхностные,
    • со смещением поверхностей (по направлению вращения) или без (для сохранения возможности обратного вращения),
    • со/без смещением центра (для конечной установки валов после монтажа);
  • по направлению восприятия нагрузки
    • радиальные
    • осевые (упорные, подпятники),
    • радиально-упорные;
  • по конструкции
    • неразъемные (втулочные; в основном для I-1),
    • разъемные (состоящие из корпуса и крышки; в основном для всех, кроме I-1),
    • встроенные (рамовые, составляющие одно целое с картером, рамой или станиной машины);
  • по количеству масляных клапанов
    • с одним клапаном,
    • с несколькими клапанами;
  • по возможности регулирования
    • нерегулируемые,
    • регулируемые.

Ниже представлена таблица групп и классов подшипников скольжения (примеры обозначения: I-1, II-5) .

Группа Класс Способ смазки Вид трения Примерный коэффициент трения Назначение Область применения
I (несовершенная смазка) 1 Малое количество, подача непостоянная Граничное 0,1…0,3 Малые скорости скольжения и небольшие удельные давления Опорные ролики транспортеров , ходовых колес мостовых кранов
2 Обычно непрерывная Полужидкостное 0,02…0,1 Кратковременный режим с постоянным или переменным направлением вращения вала, малые скорости и большие удельные нагрузки
  • Линейные и формовочные машины
  • Кузнечно-прессовое оборудование
  • Грузоподъемные машины
3 Масляная ванна или кольца 0,001…0,02 Мало меняющиеся по величине и направлению усилия большие и средние нагрузки
  • Тяжелые станки
  • Мощные электрические машины
  • Тяжелые редукторы
  • Текстильные машины
Под давлением
  • Газовые двигатели
  • Тихоходные и судовые двигатели
II 4 Кольца, комбинированный или под давлением Жидкостное 0,0005…0,005 Малые окружные скорости валов, особо тяжелые условия работы при переменных по величине и направлению нагрузках
  • Электрические машины средней и малой мощности
  • Легкие и средние редукторы
  • Центробежные насосы и компрессоры
5 Под давлением 0,005…0,05 Слабонагруженные опоры с большими скоростями скольжения
  • Водяные турбины
  • Осевые вентиляторы

Достоинства

  • Надежность в высокоскоростных приводах
  • Способны воспринимать значительные ударные и вибрационные нагрузки
  • Бесшумность
  • Сравнительно малые радиальные размеры
  • Допускают установку разъемных подшипников на шейки коленчатых валов и не требуют демонтажа других деталей при ремонте
  • Простая конструкция в тихоходных машинах
  • Позволяют работать в воде
  • Допускают регулирование зазора и обеспечивают точную установку геометрической оси вала
  • Экономичны при больших диаметрах валов

Недостатки

  • В процессе работы требуют постоянного надзора за смазкой
  • Сравнительно большие осевые размеры
  • Большие потери на трение при пуске и несовершенной смазке
  • Большой расход смазочного материала
  • Высокие требования к температуре и чистоте смазки
  • Пониженный коэффициент полезного действия
  • Неравномерный износ подшипника и цапфы
  • Применение более дорогих материалов

Примеры

    Радиально-упорный шариковый подшипник

    Радиально-упорный шариковый подшипник с четырёхточечным контактом

    Самоустанавливающийся двухрядный радиальный шариковый подшипник

    Радиальный шариковый подшипник для корпусных узлов

    Радиальный роликовый подшипник

    Радиально-упорный роликовый подшипник (конический)

    Самоустанавливающийся радиальный роликовый подшипник