Эфемериды глонасс. GPS: основые понятия и термины

После заявления вице-премьера Дмитрия Рогозина о том, что Россия с 1 июня приостановит работу 11 наземных станций GPS на своей территории и что, возможно, с 1 сентября работа этих станций может быть полностью прекращена, офисные хомячки всполошились не на шутку. Как же теперь они найдут дорогу к холодильнику без GPS ? И смогут ли попасть на работу, если навигатор в машине не подскажет, где нужно повернуть?

Вместо того, чтобы разобраться в том, а зачем же вообще нужны эти станции, они начали сеять буквально панику на просторах интернета. Ведь ГЛОНАСС есть далеко не во всех телефонах и навигаторах.

Сегодня я расскажу вкратце о том, для чего используются базовые станции GPS , и действительно ли без них мир рухнет.

Во-первых разберемся из-за чего такая буча началась. Заявляения вице-премьера и дальнейшие действия являются симметричным ответом правительства России на отказ США размещать на своей территории станции коррекции сигнала российской навигационной системы ГЛОНАСС. А любая глобальная навигационная система, будь то российская ГЛОНАСС, американская GPS , европейская GALILEO, или китайская COMPASS создавались в первую очередь для применения в военных целях (грубо говоря, чтобы ракеты точнее наводить), а различные гражданские области применения — лишь побочный продукт. И в свете последних событий на политической арене, такие заявления нашего правительства являются вполне разумными.

Все, наверное, видели видеосюжеты в новостях про сверхточное оружие. Вот некоторая статистика: в операции «Буря в пустыне» лишь около 10% применявшейся боевой техники американцами использовали систему GPS для точного наведения, а уже в конфликте в Косово, GPS использовалась в 95% случаев для тех же целей.

Так для чего же нужны наземные станции?

На наземных станциях установлены приемники GPS для пассивного слежения за навигационными сигналами спутников, входящими в систему. После получения со спутника, информация передается, где впоследствии обрабатывается на главную управляющую станцию. Эти данные используются для обновления эфемерид спутников.

Эфемериды – это таблица, содержащая координаты небесного тела, приведенная в различные периоды времени за определенный период. Астрономы и геодезисты используют эфемериды для определения положений небесных тел, которые берутся в дальнейшем для вычисления координат точек на поверхности Земли.

Для нас GPS эфемериды можно сравнить с GPS спутниками, и представить их в качестве созвездия искусственных звезд. Для того, чтобы вычислить наше местоположение относительно спутников GPS , нам нужно знать их местонахождение в пространстве, другими словами, нам нужно знать их эфемериды. Существует два типа эфемерид: переданные (бортовые) и точные.

Переданные эфемериды

Переданные эфемериды поступают с GPS спутников. Они содержат информацию об элементах кеплеровской орбиты, которые позволяют GPS приемнику вычислять общеземные геоцентрические координаты каждого спутника, относительно исходной геодезической даты WGS-84 (это трехмерная система координат для позиционирования на Земле. В этой системе координаты определяются относительно центра масс Земли. Исходная дата — это дата, когда был определен центр масс ). Кеплеровские элементы состоят из информации о координатах спутников на определённую эпоху и изменений параметров орбиты от отчетного периода до момента наблюдения (принимается рассчитанная скорость изменения параметров). Наземные станции постоянно отслеживают заранее предсказанные положения орбит спутников, формируя поток эфемеридной информации. Далее, главная управляющая станция передает переданные эфемериды на спутники. Вычисленная точность переданных эфемерид составляет порядка 2.5 м и около 7 нс.

Точные эфемериды

Точные эфемериды состоят из общеземных геоцентрических координат каждого спутника, определенных в Общеземной наземной системе отчета и включают поправки часов. Эфемериды вычисляются для каждого спутника с определенным интервалом. Точные эфемериды – это продукт постобработки. Данные собираются наземными станциями и затем передаются в Международную Службу GPS , где и происходит вычисление точных эфемерид которые уже имеют точность порядка 5 см и 0.1 нс.

Отключение наземных станций GPS может отразиться лишь на точности позиционирования и вряд ли такая точность нужна для наших с вами повседневных задач. Простой обыватель, я думаю, не почувствует на себе потенциальное снижение этой точности при использовании смартфона в качестве навигатора.

Несмотря на то, что сам факт отключения базовых станций не приведет к тому, что устройства использующие систему GPS перестанут определять координаты, а лишь потенциально снизят , дальнейшим шагом теоретически может стать решение уже правительства США прекратить передачу сигнала GPS на территории РФ (просто пролетая над Россией американские спутники не будут транслировать сигнал). Конечно, это возможно. Но пока этого не произошло, и вряд ли случится завтра или через неделю. А через полгода лежащий в кармане смартфон станет уже не модным и нужно будет выбирать новый гаджет Вот тогда-то и нужно будет присмотреться к устройствам в которых есть ГЛОНАСС и я думаю, в ближайшее время их выбор только увеличится.

Точность, которую дает на сегодняшний день ГЛОНАСС несколько ниже чем у GPS , но этот разрыв сокращается с каждым новым запущенным российским спутником в рамках отечественной программы. К тому же несколько больше времени уходит на, так называемый, «холодный старт» — сигнал с первого найденного спутника в устройствах ГЛОНАСС ищется несколько дольше с точки зрения пользователя, и, на самом деле, не так уж это и страшно.

Как вы оцениваете эту публикацию?

ГОСТ Р 56410-2015

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Глобальная навигационная спутниковая система

МЕТОДЫ И ТЕХНОЛОГИИ ВЫПОЛНЕНИЯ ГЕОДЕЗИЧЕСКИХ РАБОТ

Общие требования к центрам точных эфемерид

Global navigation satellite system. Methods and technologies of geodetic works. General requirements for precise ephemeris centers


ОКС 07.040

Дата введения 2016-01-01

Предисловие

1 РАЗРАБОТАН Акционерным обществом "Научно-технический центр современных навигационных технологий "Интернавигация" (АО "НТЦ "Интернавигация"), Федеральным государственным бюджетным учреждением высшего профессионального образования "Московский государственный университет геодезии и картографии" (МИИГАиК) и Федеральным государственным бюджетным учреждением "Федеральный научно-технический центр геодезии, картографии и инфраструктуры пространственных данных"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 363 "Радионавигация"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 28 мая 2015 г. N 456-ст

4 ВВЕДЕН ВПЕРВЫЕ


Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

1 Область применения

Настоящий стандарт распространяется на методы и технологии выполнения геодезических работ с использованием глобальных навигационных спутниковых систем и устанавливает общие требования к центрам точных эфемерид.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 22268-76 Геодезия. Термины и определения

ГОСТ Р 52928-2010 Система спутниковая навигационная глобальная. Термины и определения

ГОСТ Р 53864-2010 Глобальная навигационная спутниковая система. Сети геодезические спутниковые. Термины и определения

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, обозначения и сокращения

3.1 В настоящем стандарте применены термины по ГОСТ 22268 , ГОСТ Р 53864 , ГОСТ Р 52928 .

3.2 В настоящем стандарте использованы следующие обозначения и сокращения:

ВГС - высокоточная геодезическая сеть Российской Федерации;

ГЛОНАСС - глобальная навигационная спутниковая система Российской Федерации;

ГНСС - глобальная навигационная спутниковая система;

СГС-1 - спутниковая геодезическая сеть 1 класса;

СКП - среднеквадратическая погрешность;

ФАГС - фундаментальная астрономо-геодезическая сеть Российской Федерации;

ЦТЭ - центр точных эфемерид;

Final эфемериды - финальные эфемериды, вычисляемые в IGS;

GPS - глобальная навигационная спутниковая система Соединенных Штатов Америки;

IERS - международная служба вращения Земли и систем координат;

IGS - международная служба ГНСС;

РРР - высокоточное местоопределение;

Rapid эфемериды - срочные эфемериды, вычисляемые в IGS;

RINEX - обменный формат файлов данных спутниковых навигационных приемников, не зависящий от типа приемника;

SP3 - стандартный формат орбитальной информации;

Ultra-Rapid эфемериды - сверхсрочные эфемериды, вычисляемые в IGS.

4 Общие положения

4.1 Точные эфемериды спутников ГНСС содержат сведения о местоположении спутника на орбите, получаемые после проведения траекторных измерений и описывающие его реальное движение.

4.2 Точные эфемериды спутников ГНСС должны обеспечивать:

- построение государственных спутниковых геодезических сетей (ФАГС, ВГС, СГС-1), а также закрепление, распространение и уточнение принятых систем координат;

- определение пространственного положения объектов в государственных системах координат с высокой точностью (несколько миллиметров СКП) при решении геодезических задач на большие расстояния (до нескольких тысяч километров);

- эффективное применение дифференциальных систем, основанных на относительных (разностных) координатных определениях, в целях точной навигации, когда допустимая погрешность навигационных определений в режиме реального времени не должна превышать 1 м или даже меньших значений;

- реализацию современных методов определения координат по наблюдениям спутников ГНСС с использованием технологии РРР, позволяющих определять местоположение в режиме реального времени с СКП от 0,1 до 0,2 м.

4.3 Обеспечение потребителя точными эфемеридами осуществляется центрами точных эфемерид.

Примерная схема типового ЦТЭ приведена на рисунке 1.

Рисунок 1 - Схема центра точных эфемерид

5 Требования назначения

5.1 Центр точных эфемерид предназначен для вычисления и предоставления потребителю точных эфемерид спутников ГНСС ГЛОНАСС, включающих оперативно уточненные (сверхсрочные), уточненные (срочные) и точные (финальные) эфемериды, а также накопление и предоставление спутниковых измерений пунктов ФАГС в формате RINEX.

При определении эфемерид используются фазовые измерения, выполненные двухчастотной геодезической спутниковой аппаратурой на постоянно действующих пунктах ГНСС-наблюдений (пункты ФАГС).

5.2 Основные задачи ЦТЭ:

- оперативное получение измерительной информации по каналам электронной связи с пунктов ФАГС и международных пунктов ГЛОНАСС/GPS-наблюдений (в т.ч. пунктов IGS);

- обработка и декодирование измерительной информации с целью контроля качества поступивших измерений, выявления грубых ошибок и перевода измерительных файлов в общий формат, необходимый для последующего вычисления определяемых параметров;

- накопление результатов наблюдений в исходном или первично обработанном виде (ведение архива данных);

- анализ и математическая обработка ежесуточных файлов измерений со всех станций сети с целью вычислений орбитальных параметров спутников ГНСС и параметров вращения Земли с разрешением от нескольких часов до двух суток;

- уточнение бортовых эфемерид;

- совместная обработка полученных данных и вычисление точных эфемерид спутников ГЛОНАСС;

- оформление и выдача потребителям данных с точными эфемеридами по каналам связи;

- вычисление координат и скоростей движения пунктов ФАГС и IGS с разрешением (1-3) мес;

- информационное взаимодействие с международными центрами анализа, входящими в состав IGS, IERS и др. для обмена данными с целью контроля и возможного кооперирования в определениях точных эфемерид ГЛОНАСС;

- осуществление научной и аналитической деятельности, включающее разработку и согласование форматов представления и методик обработки спутниковой информации.

6 Требования к аппаратно-программному обеспечению

6.1 Аппаратная часть ЦТЭ включает:

- сервер, обладающий достаточно высоким быстродействием, большим объемом оперативной и дисковой памяти и средствами выхода во внешние сети через Интернет;

- автоматизированные рабочие места обработки данных на базе персональных компьютеров, объединенные локальной вычислительной сетью;

- средства архивации и долговременного хранения данных;

- средства отображения выходных данных и подготовки возможных бюллетеней для потребителей;

- аппаратура резервирования, обеспечивающая бесперебойную работу ЦТЭ.

6.2 Программно-математическое обеспечение ЦТЭ включает следующие компоненты:

- программы управления локальной вычислительной сетью, которая обеспечивает согласованную работу всех средств ЦТЭ;

- набор программ управления аппаратурой обмена данными по внешним каналам;

- программы обслуживания базы данных;

- программы обработки результатов наблюдений и вычисления эфемерид спутников;

- программные средства для математической обработки результатов наблюдений и вычислений параметров вращения Земли;

- программы подготовки выходных данных для потребителей;

- программы, обеспечивающие функционирование сайта ЦТЭ.

7 Требования к выходным данным

7.1 В состав выходных данных ЦТЭ входят эфемериды спутников ГНСС следующих видов:

- оперативно уточненные (аналог Ultra-Rapid эфемерид);

- уточненные (аналог Rapid эфемерид);

- точные (аналог Final эфемерид).

7.2 Эфемериды, выдаваемые ЦТЭ, вычисляются по измерениям, выполненным на постоянно действующих пунктах ГНСС-наблюдений мировой сети и пунктах ФАГС. Распределение пунктов наблюдений по земному шару, по возможности, должно быть равномерным. Постоянно действующие пункты наблюдений (пункты ФАГС) должны иметь точные координаты в геоцентрической системе координат, величина средней квадратической погрешности взаимного положения пунктов составляет порядка (0,01-0,03) м.

7.3 Задержка по времени выдачи составляет:

- для оперативно уточненных (сверхсрочных) эфемерид - от 3 до 9 ч;

- для уточненных (срочных) эфемерид - от 17 до 41 ч;

- для точных (финальных) эфемерид - от 12 до 18 сут.

7.4 Точные эфемериды должны обеспечивать определение координат спутников ГНСС с точностью порядка (0,05-0,10) м.

7.5 Результаты вычисления эфемерид представляются в виде файлов в формате SP3 , принятом в международных и национальных центрах спутниковых данных.

7.6 Файлы измерений пунктов ФАГС, хранятся в базе данных и предоставляются потребителю в одной из версий формата RINEX , .

7.7 Вычисленные эфемериды размещаются на сайте ЦТЭ, а также предоставляются потребителю по Интернет-адресу или по запросам.

Библиография

Стандартный расширенный формат орбитальной информации SP3-с (версия 3)

RINEX: Аппаратнонезависимый формат обмена данными (версия 2.11)

RINEX: Аппаратнонезависимый формат обмена данными (версия 3.02)

УДК 629.783::006.354

Ключевые слова: глобальная навигационная спутниковая система, центр точных эфемерид, общие требования, постоянно действующий пункт, спутниковая геодезическая сеть

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание

М.: Стандартинформ, 2015

Навигационные спутники передают два вида данных - альманах и эфимерис .

Альманах - это набор сведений о текущем состоянии навигационной системы в целом, включая загубленные эфемериды, применяемые для поиска видимых спутников и выбора оптимального созвездия, содержащих сведения. Альманах содержит параметры орбит всех спутников. Каждый спутник передает альманах для всех спутников. Данные альманаха не отличаются большой точностью и действительны несколько месяцев.

Данные эфимериса содержат очень точные корректировки параметров орбит и часов для каждого спутника, что требуется для точного определения координат. Каждый навигационный спутник передает данные только своего собственного эфимериса.

Навигационные сообщения - это передаваемые спутником пакетные данные, содержащие эфемериду с метками времени и альманахом.

Сигнал, передаваемый навигационными спутниками, условно можно разделить на два основных компонента: навигационный сигнал (псевдослучайный дальномерный код) и навигационное сообщение (содержащее большое количество сведений о параметрах навигационных спутников). В свою очередь, навигационное сообщение содержит эфемеридные данные и альманах (рис. 3.24). Сразу подчеркнем, что дальномерный код также передается в составе навигационного сообщения, что станет понятным из дальнейшего изложения.

Оперативная информация

(Эфемериды)

Далыюмерный, псевдослучайный код

Неоперативная информация

(Альманах)

Рис. 3.24. Структура сигнала навигационных спутников

Можно сказать, что сигнал навигационных спутников содержит три основных составляющих:

  • 1) псевдослучайный (дальномерный) код;
  • 2) альманах;
  • 3) эфемеридные данные.

Информацию о местоположении спутников навигационные приемники получают именно из данных, содержащихся в альманахах и эфемеридах спутников. Поясним значение термина «эфемерида» (др.-греч. ?(ргщ?р1? - на день, ежедневный). В астрономии это таблица небесных координат Солнца, Луны, планет и других астрономических объектов, вычисленных через равные промежутки времени, например, на полночь каждых суток.

Также эфемеридами называются координаты искусственных спутников Земли, используемых для навигации в системах NAVSTAR (GPS), ГЛОНАСС, Galileo и др. Эфемериды - это уточненная информация об орбите данного конкретного спутника, передающего сигнал, поскольку реальная орбита спутника может отличаться от расчетной. Именно точные данные о текущем положении спутников позволяют навигационному приемнику вычислять точное местоположение спутника и на этой основе рассчитывать собственное местоположение. Данные эфемерид навигационной группировки ГЛОНАСС публикуются на сайте Российского космического агентства (Роскосмос). Состав эфемерид спутников ГЛОНАСС включает, в частности, следующие параметры орбиты спутника :

  • NS - номер спутника;
  • дата - базовая дата (UTC+3 ч), ЧЧ.ММ.ГГ;
  • ТО. - время прохождения восходящего узла (количество секунд от 00 ч 00 мин 00 с базовой даты), с;
  • Т а6 - период обращения, с;
  • е - эксцентриситет;
  • / - наклонение орбиты, °;
  • ЬО - географическая долгота восходящего узла ГЛОНАСС, °;
  • со - аргумент перигея, °;
  • 5/, - поправка к бортовой шкале времени, с;
  • п, - номер литерной частоты;
  • АТ - скорость изменения драконического периода. Драко-ническии период - интервал времени между двумя последовательными прохождениями небесного тела через один и тот же (восходящий или нисходящий) узел орбиты.

Понятие эксцентриситета орбитального эллипса поясняет рис. 3.25:

  • а
  • основная полуось орбитального эллипса - Ь _
  • эксцентриситет орбитального эллипса: е =

Эфемеридные данные являются составной частью альманаха. Получив от альманаха основные примерные параметры орбит всех спутников, навигатор получает от каждого из спутников его собственный эфимерис. По этим точным данным корректируются

Рис. 3.25.

параметры орбит, т.е. данные альманаха. Эфимерисы - это своего рода «надстройка» над альманахом, которая основные параметры превращает в параметры конкретные. Данные эфимериса содержат очень точные корректировки параметров орбит и часов для каждого спутника, что требуется для точного определения координат.

В отличие от альманаха, каждый спутник передает данные только своего собственного эфимериса, и с их помощью навигационный приемник с высокой точностью может определить местоположение спутников.

Эфимерисы, несущие более точные данные, устаревают достаточно быстро. Эти данные действительны только 30 мин. Спутники передают свой эфимерис каждые 30 с. Обновление эфемерид осуществляется наземными станциями. Если приемник был отключен более 30 мин, а потом включен, то он начинает искать спутники, основываясь на известном ему альманахе. По нему он выбирает спутники для инициации поиска.

Когда навигационный приемник фиксирует спутник, идет процесс сбора данных эфимериса. Когда эфимерис каждого спутника принят, данные, принятые от спутника, считаются подходящими для навигации.

Если питание приемника отключить, а потом снова включить в течение 30 мин, то он «поймает» спутники очень быстро, так как не нужно будет снова собирать данные эфимериса. Это «горячий» старт.

Если после отключения прошло более 30 мин, то будет произведен «теплый» старт, и приемник снова начнет собирать данные эфимериса.

Если приемник был перевезен (в выключенном состоянии) на несколько сотен километров или внутренние часы стали показывать неточное время, то данные имеющегося альманаха являются неверными. В таком случае навигатору требуется выполнить загрузку нового альманаха и эфимериса. Это уже будет «холодный» старт.

Обеспечение спутников эфемеридами производит наземный сегмент системы, т.е. на Земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определенный промежуток времени. Измерение и прогноз параметров движения НКА производятся в баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости. Параметры и их прогноз закладываются в навигационное сообщение, передаваемое спутником наряду с передачей навигационного сигнала.

В GPS альманах в комплексе с другими полями данных передается каждые 12,5 мин, в ГЛОНАСС - каждые 2,5 мин. В табл. 3.3 для сравнения приведены два временных параметра альманаха и эфемерисов GPS. Очевидно, что период обновления данных и сроки их актуальности для альманаха и эфимериса существенно различны.

Таблица 3.3

Периоды обновления данных орбит навигационных спутников

Данный сервис предоставляет возможность подобрать файлы точных эфемерид зная дату наблюдений. Просто укажите дату и нажмите "Подобрать".

Назначение точных эфемерид - более точная обработка статических наблюдений. Их применение в обработке не гарантирует высокое качество, но может повысить колличество фиксированных решений если работа велась в сложных условиях (ограниченный обзор в городе с плотной застройкой, вблизи деревьев и т.п.).

Данные рассчитываются и хранятся в публичном доступе на FTP-серверах Международной ГНСС службы и Архива данных космической геодезии NASA .

Наилучшие final эфемериды вычисляются и публикуются с задержкой 12-18 дней. В реальном времени (или с задержкой в несколько часов) доступны т.н. ultra-rapid и rapid продукты. Их точность хуже чем у финальных, но в то же время значительно лучше чем у навигационных.

Файлы хранятся в запакованом виде, распаковываются большинством архиваторов, например 7zip


Полезности

The World Coordinate Converter

Сайт основан на добровольных началах, потому при входе спрашивает о пожертвовании в свою пользу. В основном будет полезен если необходимо преобразовать координаты между различными международными системами координат, и некоторыми государственными (параметры которых открыты для публичного доступа, не про Украину), например ETRF89, WGS84, WGS84 Web Mercator и публично доступные государственные.

Геокалькулятор НДІГК

Тот самый геокалькулятор государственной службы Украины по вопросам геодезии, картографии и кадастра.

TrimbleRTX

Сервис для постобработки от Trimble, результат выдаёт в виде ETRS и ITRF различных реализаций. Необходимы длительные наблюдения для приемлемой точности. Опирается на наблюдения международных станций и некоторые свои. Бесплатно, но с регистрацией

AusPOS

Сервис для постобработки Geoscience Australia от Австралийского правительства, результат выдаёт в виде ITRF2014. Необходимы длительные наблюдения для приемлемой точности. Опирается на наблюдения международных станций. Бесплатно, без регистрации.

Планировщики GNSS съёмки

Инструменты для планирования GNSS измерений на определённый период, позволяют заранее оценить видимые спутники при заданном углу отсечки, их положение над горизонтном. Данные инструменты будут полезны при планировании оптимального времени съёмки в местах с плохим обзором небосвода (карьеры, города) и при использовании односистемных приёмников.

Процессы, происходящие в современной технике, для пользователя загадка. Более того, зачастую пользователя они ничуть не волнуют: или не интересно, или просто все равно. Это касается и навигаторов. Включил – и знаешь свои координаты. Несколько движений пальцами – маршрут готов. Однако порою, чтоб разобраться с техническими характеристиками того же навигатора, нужно знать больше, чем необходимо просто для пользования им.

Поэтому, оговорюсь сразу: статья будет интересна тем, кого не устраивает роль рядового пользователя «черной коробочки с экраном». Тем, кто стремится изучить все пункты технической характеристики устройства перед его приобретением. Тем, кто получает удовольствие от понимания процессов, происходящих в разнообразных устройствах.

Такие люди не отвечают «не знаю» на вопросы типа: «Какой на твоем компьютере установлен процессор?». Вопрос-то, по сути, элементарный, но вы будете удивлены тем, какой процент друзей-товарищей ответ на него знает. Попробуйте!

Немного о терминах

В каждой сфере науки и техники полным-полно терминов. Термины эти звучат для непосвященных загадочно, но становятся, в целом, понятными при более пристальном рассмотрении.

В теории космической навигации также есть множество терминов. И неудивительно: эта сфера знаний связана и с движением спутников в околоземном пространстве, и с приемом-обработкой-передачей сигналов, и с их кодированием.

Терминами, которые небесполезно будет рассмотреть, являются понятия альманах и эфемериды. Почему именно эти понятия нам интересны? Да потому, что на знании этих понятий основывается понимание «холодного» и «горячего» старта навигатора.

Альманах в современной навигации и не только

Еще до начала эры космической навигации понятие альманах уже существовало. Альманахом называли справочник, который содержит основные астрономические данные – положения небесных тел и их привязку к календарю. Одним из самых старых альманахов является китайская книга Тун Син.

В наши дни назначение альманахов не изменилось. Изменилось только количество данных, которые в них содержатся, и их точность. Альманах в космической навигации – совокупность данных об основных параметрах орбит спутников в навигационной системе. Форма представления этих данных для нас, собственно, не так и важна.

Альманах содержит шесть параметров орбиты спутника на определенный момент времени. Причем каждый спутник системы имеет данные о других спутниках. Навигатор, установив связь всего с одним спутником, после получения альманаха имеет данные о параметрах орбит и других. Альманах, загруженный в память спутника, действителен 30 дней. Тем не менее уточняются эти данные чаще – раз в несколько суток, во время сеанса связи с одной из наземных станций.

Эфемериды

Кроме основных параметров орбит, навигатор получает от каждого из спутников их эфемериды, это данные, по которым вычисляются отклонения орбиты, коэффициенты возмущений и т.д. То есть с их помощью навигатор с высокой точностью может определить местоположение спутников.

Эфемериды, несущие более точные данные, устаревают гораздо скорее. Их данные активны только около 30 минут. Они также обновляются наземными станциями.

Без данных о местоположении навигационных спутников невозможно определение координат приемника. Необходимо для этого целых четыре спутника. Об особенностях включения навигатора и о «холодном», «теплом» и «горячем» старте, поговорим в следующей статье.

Что такое «холодный» и «горячий» старт навигатора?

Общий алгоритм работы навигатора

Именно общий – все до мелочей знают только разработчики. Итак, после включения навигатор начинает совершать попытки установить связь с одним из навигационных спутников.

Первый же спутник, с которым связь была установлена, передает навигатору альманах, в котором содержится информация про основные параметры орбит каждого спутника орбитальной группировки этой конкретной навигационной системы.

Одного спутника для определения координат мало. Для этого, например, в навигационной системе GPS их необходимо как минимум четыре. Каждый из этих четырех передает навигатору свои эфемериды – набор уточненных данных про свою орбиту.

В целом, ничего сложного, но вот так незаметно мы и подобрались к тому этапу, на котором будет раскрыта разница между двумя этими видами старта навигатора.

«Холодный» старт

Включив навигатор в первый раз или после длительного перерыва в его использовании, получения собственных координат придется ждать. Сколько? Зависит от многих факторов:
- от качества приемного блока навигатора;
- от количества спутников в зоне радиовидимости;
- от состояния атмосферы;
- от уровня электромагнитного шума на основных частотах.

При так называемом «холодном» старте навигатора, в его памяти вообще отсутствуют как альманах, так и эфемериды. А может, и присутствуют, но они безнадежно устарели.

В таком случае навигатор должен пройти полный цикл получения этих данных.

Алгоритм его действий примерно таков:
- установить связь с первым из найденных спутников;
- получить альманах, сохранить;
- получить эфемериды от найденного спутника, сохранить;
- установить связь еще с тремя спутниками, получить от них эфемериды, сохранить;

Немало действий, правда? На все это необходимо время. Потому старт и называют «холодным» – навигатору нужно время на «разогрев», подготовку к работе.

«Горячий» старт

Кардинально отличается от «холодного» тем, что на момент включения в памяти навигатора уже находится актуальный альманах и актуальные эфемериды. Вспоминаем, что данные альманаха действительны 30 суток, а эфемерид – 30 минут.

Значит, старт может быть «горячим» только в том случае, когда питание отключается только на весьма непродолжительное время.

Алгоритм работы навигатора значительно упростится:
- установить связь со спутниками;
- если необходимо – обновить эфемериды, сохранить;
- на основе эфемерид, зная местоположение спутников, вычислить собственные координаты.

«Теплый» старт

Кратко. Навигатор располагает актуальным альманахом, но все без исключения эфемериды устарели, значит, необходимо получить только их.

Расставим все по местам

Если расставить в порядке возрастания времени, необходимого для определения навигатором приемника после включения, получится такая последовательность: «горячий», «теплый», «холодный» старты.

Теперь характеристика навигатора «время холодного/горячего старта» не только не сможет смутить знающего человека, но и даст возможность продемонстрировать свои знания. А ведь все не так уж сложно!

В алгоритме работы навигатора при «холодном» и «горячем» старте упоминалось о вычислении навигатором своих координат.

Как навигатор определяет свои координаты?

Не раз упоминалось, что для определения навигатором своих координат, нужны четыре спутника. Почему именно четыре и какова общая схема этого процесса, попробуем разобраться прямо сейчас.

Простыми словами о сложном

Электромагнитное излучение перемещается в пространстве с конечной скоростью – со скоростью света. Исходя из этого, можно, замерив интервал между моментом начала передачи сигнала и моментом его приема, определить расстояние между передатчиком и приемником.

Навигатор, установив связь со спутниками, располагая загруженными в память альманахом и эфемеридами, принимает сигнал с меткой точного времени от каждого из спутников. По своим внутренним часам навигатор определяет время, которое потребовалось сигналу, чтоб его достичь. Зная скорость распространения сигнала и время, навигатор решает простую задачу – вычисляет расстояние, на котором он находится от спутника.

Включаем объемное мышление. Для однозначного определения положения в трехмерном пространстве относительно точек с известными координатами необходимо знать, где находятся как минимум три точки.

Зная точные координаты трех спутников в определенный момент времени (спасибо альманаху и эфемеридам) и расстояния до них, навигатор и определяет свои координаты на поверхности земного шара. Уже в привязке к двумерным координатам, принятым в картографии (долгота и широта), и к высоте над уровнем моря.

С тремя разобрались. Теперь разберемся с четвертым спутником.

Не думай о секундах свысока

А если речь идет о космической навигации и скорости света – то свысока нельзя думать даже о микросекундах. Малейшая погрешность в измерении времени прохождения сигналом расстояния от навигатора до спутника может вылиться в сотни метров, а то и в километры.

Точность измерения времени – слабое место любой навигационной системы.

На каждом из спутников установлены очень точные (и дорогие и большие) атомные часы, точность хода которых – наносекунды (это 10 –9). Навигаторы оснащены намного менее точными часами – на кварцевом генераторе.

Именно для синхронизации времени в системе навигатора - три спутника и необходим четвертый. Он синхронизирует время и сводит к минимуму погрешности, которые возникают из-за неточности измерения времени. Вернее, он заставляет спутник и навигатор в одно время генерировать одинаковый код. Код этот передается в том самом сигнале, по которому замеряется расстояние. Приняв сигнал с кодом, навигатор определяет, какое время назад он сам генерировал такой код.

Такова схема в общих чертах. На деле все гораздо сложнее: цифровой сигнал подвергается кодированию, синхронизация времени, вычисление координат спутников и своего местоположения – вовсе не простые задачи. Все усложняется еще и тем, что разработчики используют различные уловки для повышения точности измерений: помехоустойчивое кодирование, поправки для нивелирования воздействия эффекта Доплера, поправки на изменение скорости прохождения радиосигнала в тропосфере и ионосфере.

Но это уже тема не краткой поясняющей статьи, а намного более серьёзной и объемной работы.