Что такое линейная электрическая цепь. Электрические цепи для чайников: определения, элементы, обозначения

Те элементы электрической цепи, для которых зависимость тока от напряжения I(U) или напряжения от тока U(I), а также сопротивление R, постоянны, называются линейными элементами электрической цепи. Соответственно и цепь, состоящая из таких элементов, именуется линейной электрической цепью.

Для линейных элементов характерна линейная симметричная вольт-амперная характеристика (ВАХ), выглядящая как прямая линия, проходящая через начало координат под определенным углом к координатным осям. Это свидетельствует о том, что для линейных элементов и для линейных электрических цепей строго выполняется.

Кроме того речь может идти не только об элементах, обладающих чисто активными сопротивлениями R, но и о линейных индуктивностях L и емкостях C, где постоянными будут зависимость магнитного потока от тока - Ф(I) и зависимость заряда конденсатора от напряжения между его обкладками - q(U).

Яркий пример линейного элемента - . Ток через такой резистор в определенном диапазоне рабочих напряжений линейно зависит от величины сопротивления и от приложенного к резистору напряжения.


Нелинейные элементы

Если же для элемента электрической цепи зависимость тока от напряжения или напряжения от тока, а также сопротивление R, непостоянны, то есть изменяются в зависимости от тока или от приложенного напряжения, то такие элементы называются нелинейными, и соответственно электрическая цепь, содержащая минимум один нелинейный элемент, окажется .

Вольт-амперная характеристика нелинейного элемента уже не является прямой линией на графике, она непрямолинейна и часто несимметрична, как например у полупроводникового диода. Для нелинейных элементов электрической цепи закон Ома не выполняется.

В данном контексте речь может идти не только о лампе накаливания или о полупроводниковом приборе, но и о нелинейных индуктивностях и емкостях, у которых магнитный поток Ф и заряд q нелинейно связаны с током катушки или с напряжением между обкладками конденсатора. Поэтому для них вебер-амперные характеристики и кулон-вольтные характеристики будут нелинейными, они задаются таблицами, графиками или аналитическими функциями.

Пример нелинейного элемента - лампа накаливания. С ростом тока через нить накаливания лампы, ее температура увеличивается и сопротивление возрастает, а значит оно непостоянно, и следовательно данный элемент электрической цепи нелинеен.


Для нелинейных элементов свойственно определенное статическое сопротивление в каждой точке их ВАХ, то есть каждому отношению напряжения к току, в каждой точке на графике, - ставится в соответствие определенное значение сопротивления. Оно может быть посчитано как тангенс угла альфа наклона графика к горизонтальной оси I, как если бы эта точка лежала на линейном графике.

Еще у нелинейных элементов есть так называемое дифференциальное сопротивление, которое выражается как отношение бесконечно малого приращения напряжения - к соответствующему изменению тока. Данное сопротивление можно посчитать как тангенс угла между касательной к ВАХ в данной точке и горизонтальной осью.

Такой подход делает возможным простейший анализ и расчет простых нелинейных цепей.

На рисунке выше показана ВАХ типичного . Она располагается в первом и в третьем квадрантах координатной плоскости, это говорит нам о том, что при положительном или отрицательном приложенном к p-n-переходу диода напряжении (в том или ином направлении) будет иметь место прямое либо обратное смещение p-n-перехода диода. С ростом напряжения на диоде в любом из направлений ток сначала слабо увеличивается, а после резко возрастает. По этой причине диод относится к неуправляемым нелинейным двухполюсникам.

На этом рисунке показано семейство типичных ВАХ в разных условиях освещенности. Основной режимом работы фотодиода - режим обратного смещения, когда при постоянном световом потоке Ф ток практически неизменен в довольно широком диапазоне рабочих напряжений. В данных условиях модуляция освещающего фотодиод светового потока, приведет к одновременной модуляции тока через фотодиод. Таким образом, фотодиод - это управляемый нелинейный двухполюсник.

Это ВАХ , здесь видна ее явная зависимость от величины тока управляющего электрода. В первом квадранте - рабочий участок тиристора. В третьем квадранте начало ВАХ - малый ток и большое приложенное напряжение (в запертом состоянии сопротивление тиристора очень велико). В первом квадранте ток велик, падение напряжения мало - тиристор в данный момент открыт.

Момент перехода из закрытого - в открытое состояние наступает тогда, когда на управляющий электрод подан определенный ток. Переключение из открытого состояния - в закрытое происходит при снижении тока через тиристор. Таким образом, тиристор - это управляемый нелинейный трехполюсник (как и транзистор, у которого ток коллектора зависит от тока базы).

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Электрические цепи

– это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

– это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Линейная электрическая цепь

English: Line circuit

Электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи (по ГОСТ 19880-74)

Строительный словарь .

Смотреть что такое "Линейная электрическая цепь" в других словарях:

    линейная электрическая цепь - Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными зависимостями. [ГОСТ Р 52002 … Справочник технического переводчика

    Линейная электрическая цепь - 119. Линейная электрическая цепь Электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи Источник: ГОСТ 19880 74: Электротехника.… …

    Линейная электрическая цепь - – электрическая цепь, электрические сопротивления, индуктивности и электрические емкости участков которой не зависят от значений и направлений токов и напряжений в цепи. ГОСТ 19880 74 … Коммерческая электроэнергетика. Словарь-справочник

    линейная электрическая цепь - Электрическая цепь, сопротивления, индуктивности и емкости участков которой не зависят от величин и направлений токов и напряжений в цепи … Политехнический терминологический толковый словарь

    Электрическая цепь линейная (нелинейная) - электрическая цепь, у которой электрические напряжения и электрические токи или (и) электрические токи и магнитные потокосцепления, или (и) электрические заряды и электрические напряжения связаны друг с другом линейными (нелинейными)… … Официальная терминология

    Линейная [нелинейная] электрическая цепь - 1. Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с другом линейными [нелинейными]… … Телекоммуникационный словарь

    Совокупность источников, приёмников электрической энергии и соединяющих их проводов. Кроме этих элементов, в Э. ц. могут входить выключатели, переключатели, предохранители и другие электрические аппараты защиты и коммутации, а также… … Большая советская энциклопедия

    линейная - 98 линейная [нелинейная] электрическая цепь Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с… … Словарь-справочник терминов нормативно-технической документации

    В Викисловаре есть статья «цепь» Цепь: В технике: Цепь конструкция, состоящая из одинаковых звеньев (в изначальном значении металлических колец), соединённых … Википедия

    Рисунок 1 Цепь Чуа. L,G,C1,C2 пассивные элементы, g диод Чуа. В классическом варианте предлагаются следующие значения элементов: L=1/7Гн;G=0.7См;C1=1/9Ф;C2=1Ф Цепь Чуа, схема Чуа простейшая электрическая цепь, демонстрирующая режимы… … Википедия

Линейные электрические цепи постоянного тока

3.1. Основные определения.

3.2. Элементы электрических цепей (ЭЦ).

3.3. Схемы замещения источников электрической энергии.

3.4. Топологии ЭЦ.

3.5. Законы Ома и Кирхгофа в линейных ЭЦ.

3.6. Эквивалентные преобразования ЭЦ.

3.7. Методы анализа линейных ЭЦ.

Основные определения

Электрическая цепь – совокупность электротехнических устройств, состоящих из соответствующим образом соединённых источников и приёмников энергии, предназначенных для генерации, передачи, распределения и преобразования электрической энергии и/или информации.

Элементы цепи – отдельные объекты, выполняющие строго определённые функции. Основные элементы цепи – источники электрической энергии (ЭЭ) (генераторы – устройства производства ЭЭ), и приёмники (устройства, потребляющие ЭЭ). У каждого элемента цепи существует определённое количество контактов или полюсов. При этом различают:

· двухполюсные элементы (источники энергии, за исключением многофазных и управляемых; резисторы, катушки индуктивности, конденсаторы);

· многополюсные элементы (триоды, трансформаторы, усилители).

Кроме того, все элементы делятся на:

· активные – содержащие источник ЭЭ;

· пассивные – в которых ЭЭ рассеивается (резистор) либо накапливается (конденсатор или катушка индуктивности).

Основными характеристиками элементов являются следующие:

· вольт-амперные (для резисторов - R);

· вебер-амперные (для катушки - L);

· кулон-вольтные (для конденсаторов - С);

описываемые дифференциальными и (или) алгебраическими уравнениями.

Коэффициенты, связывающие переменные, их интегралы и производные в этих уравнениях, называются параметрами элементов .

Мгновенные значения напряжения или тока – это их значения в любой заданный момент времени, они являются функциями времени и обозначаются строчными буквами: u(t), i(t), e(t).

Мгновенное значение тока – равно скорости изменения заряда:

При этом за положительное направление тока принимают движение положительных зарядов (от «+» к «-»).

Мгновенное значение напряжения – есть значение электрической энергии (dW ), затраченной на перемещение единицы электрического заряда:

При этом за положительное направление напряжения принимают направление, совпадающее с током.

С другой стороны, напряжение можно определить как разность потенциалов двух точек:

При этом потенциалом данной точки называется отношение потенциальной энергии заряда к величине этого заряда: . Напряжение участка цепи, по которому протекает электрический ток, называют падением напряжения.

Мгновенное значение электрической энергии, измеряемое в Дж (тепловая), Вт.с, В.А.с. (электрическая), э.В (атомная-ядерная), определяется (с учетом (1) и (2): dW = Udq):


Тогда мгновенная электрическая мощность определится как скорость изменения мгновенной электрической энергии (Дж/с, Вт, ВА):

Поскольку мгновенные значения тока и напряжения могут быть как положительными, так и отрицательными, то и мгновенная мощность также может быть положительной, что означает увеличение или потребление ЭЭ цепью, и отрицательной, что означает убывание или отдачу ЭЭ из цепи.

Изучение свойств цепей осуществляется методами анализа , т.е. определением реакции или отклика цепи с известной структурой и параметрами на заранее (априори) заданные воздействия (измерительные сигналы – дельта-функция, функция включения, гармоническое колебание). Реализация известных ЭЦ с заданными свойствами осуществляется методами синтеза , т.е. определением структуры или топологии цепи при известных входных и выходных сигналах и/или заданной функциональной зависимости между ними. При этом задачи синтеза сложнее задач анализа, поскольку их решение не однозначно, т.е. заданные свойства цепи могут быть реализованы различными структурами с различными характеристиками.

1.1.Элементы электрических цепей постоянного тока

Электромагнитные устройства с происходящими в них физическими процессами можно заменить некоторым расчетным эквивалентом – электрической цепью (ЭЦ).

Электрической цепью называют совокупность источников электрической энергии, соединенных с нагрузками. Электромагнитные процессы в ЭЦ можно описать с помощью понятий: ток – I (А), напряжение – U (В), электродвижущая сила (ЭДС) – Е (В), электрический потенциал в точке а – φ a , сопротивление – R (Ом), проводимость – g (См), индуктивность – L (Гн), емкость – С (Ф).

Постоянный ток, не изменяющийся во времени ни по величине, ни по направлению, представляет собой упорядоченное «направленное» движение электрических зарядов. Носителями зарядов в металлах являются электроны, в полупроводниках – дырки и электроны, в жидкостях – ионы, в газовом разряде – электроны и ионы. Упорядоченное движение носителей зарядов в проводнике вызывается электрическим полем, создаваемым источниками электрической энергии.

Источник энергии характеризуется величиной и направлением ЭДС и величиной внутреннего сопротивления.

На рис. 1.1а)изображена схема неразветвленной электрической цепи.

в)
а)
б)

Зависимость протекающего по сопротивлению R тока от напряжения на этом сопротивлении I=f(U), называется вольтамперной характеристикой (ВАХ). Сопротивления, ВАХ которых – прямые линии (рис.1.1.б.), называются линейными, а электрические цепи с такими сопротивлениями – линейными электрическими цепями. Сопротивления, ВАХ которых не являются прямыми линиями, называют нелинейными (рис. 1.1.в.), а электрические цепи с таким сопротивлениями − нелинейными. В неразветвленной цепи через каждый участок протекает один и тот же ток. В разветвленной цепи, представленной на рис.1.2., в каждой ветви протекает свой ток.

Ветвью называется участок цепи, образованный последовательно соединенными элементами, заключенными между двумя узлами а и b (рис.1.2.). Узел – это точка цепи, в которой сходится не менее трех ветвей. Если в месте пересечения двух линий нет электрического соединения, то точка не ставится.

1.2. Закон Ома для участка цепи

Напряжение U ab на участке a-b ЭЦ (рис.1.3.) понимают разность потенциалов между крайними точками этого участка. Ток I течет от точки «а» большего потенциала к точке «b» меньшего потенциала, т.е. на величину падения напряжения на сопротивлении R

а)
Рис. 1.4.

На рис. 1.4. (а и б) показаны участки цепей с источником ЭДС, по которым протекает ток I . Найдем разность потенциалов (напряжение) между точками «а» и «с» . Согласно определению в обоих случаях имеем

На рис.1.4.а) перемещение от точки «с» к точке «b» является встречным направлению ЭДС Е , поэтому на величину Е

Потенциал в точке «b» на рис. 1.4.б)оказывается выше, чем в точке с на величину ЭДС Е

Поскольку ток течет от более высокого потенциала к более низкому, в обеих схемах а и b рис. 1.4. потенциал точки а выше потенциала точки b на величину падения напряжения на сопротивлении R

Таким образом, на рис. 1.4.а)

,

а на рис. 1.4.б).

, или .

Т.о., для участка цепи, содержащего источник ЭДС, можно найти ток этого участка по разности потенциалов .

Ток для схемы рис. 1.4.а) ,

для схемы рис.1.4.б) .

Полученные уравнения выражают закон Ома для участков цепи, включающих источники ЭДС, направленные по току и против тока.

1.3. Источник ЭДС и источник тока

Источник энергии в схеме рис. 1.5.а), очерченный пунктирной линией, включает источник ЭДС Е и внутреннее сопротивление r вт .

Внешняя характеристика источника напряжения (или ВАХ) в общем случае определяется как ,

где U xx − напряжение при разомкнутой цепи нагрузки. Этому выражению соответствует прямая наклонная линия на рис. 1.5.а).

а)
б)
Рис. 1. 5.

в)
б)
а)

Рис. 1.6.

Рассмотрим два крайних случая.

1) При и , получим , тогда ВАХ − прямая линия, источник ЭДС (рис. 1.6.б) представляет собой идеализированный источник питания, напряжение на зажимах которого не зависит от величины тока.

2) Если у источника питания повышается ЭДС и внутреннее сопротивление , , то , тогда . Ток источника тока , и ВАХ примет вид, показанный на рис.1.6.в).

Следовательно, источник тока представляет собой идеализированный источник питания, в котором ток не зависит от сопротивления нагрузки.

При построении эквивалентных схем замещения ветви, содержащие источники напряжения, замыкают накоротко (r вт =0), а ветви с источниками тока ликвидируют (т. к. ). Ток в нагрузке для схем рис. 1.6.б)и в) одинаков;

для источника ЭДС , для источника тока .

Осуществим переход от схемы с источником тока к схеме с источником ЭДС. Пусть в схеме б) =50 А, =2 Ом, в схеме а) ЭДС =100 В. Следовательно, параметры эквивалентной схемы рис.1.5.а) равны = 100 В, = 2 Ом.

Можно пользоваться любым эквивалентом, но в основном пользуются источником напряжения.

1.4. Методы расчета электрических цепей постоянного тока

1.4.1.Расчет по законам Кирхгофа

Все ЭЦ подчиняются первому и второму законам Кирхгофа.

Первый закон Кирхгофа можно сформулировать двояко. Алгебраическая сумма токов, приходящих к любому узлу схемы, равна нулю. Сумма токов, приходящих к узлу, равна сумме токов, уходящих от узла.

Согласно 2-й формулировке .

Физически 1-й закон Кирхгофа означает, что при движении электронов по цепи ни в одном из узлов заряды не накапливаются.

Второй закон Кирхгофа так же можно сформулировать двояко. Алгебраическая сумма падений напряжений на резистивных элементах в любом замкнутом контуре равно алгебраической сумме ЭДС. .

В каждую из сумм составляющие слагаемые входят со знаком «+» , если они совпадают с направлением обхода контура, и со знаком «-» , если не совпадают.

Алгебраическая сумма напряжений участков вдоль любого замкнутого контура равна нулю ,

где m – число участков контура, так, для периферийного контура схемы рис.1.8. имеем .

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменений токов и напряжений во времени.

При составлении уравнений для расчетов токов в ветвях схемы с помощью законов Кирхгофа учитываем, что в каждой ветви течет свой ток.

Рис. 1.8.

Обозначим число всех ветвей схемы через «б» , число ветвей, содержащих источники тока, через «б ист.т » , и число узлов – через «у». Так как токи в ветвях с источниками тока неизвестны, то число неизвестных токов запишем как «б» - «б ист.т » .

Перед тем как составить уравнения, необходимо а) произвольно выбрать положительные направления токов в ветвях и обозначить их на схеме; б) выбрать положительные направления контуров для составления уравнений по 2-ому закону Кирхгофа.

Желательно во всех контурах положительные направления обхода выбирать одинаковыми, например, по часовой стрелке, как показано на рис. 1.9.

Чтобы получить независимые уравнения, по 1-ому закону Кирхгофа составляют число уравнений, равное числу узлов без единицы, т.е. «у-1» . По 2-ому закону Кирхгофа составляют число уравнений, равное числу ветвей без источников тока б - б ист.т , за вычетом числа уравнений, составленных по 1- му закону Кирхгофа. В рассмотренном (б - б ист.т)-(у -1) = 3 – 2 + 1 = 2.

При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в контуры, для которых уже записаны уравнения. Такие контуры условно можно назвать независимыми.

По 1- ому закону Кирхгофа составляем одно уравнение .

По 2-ому закону Кирхгофа надо составить два уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

Для контура , знак «+» взят перед , потому что направление тока совпадает с направлением обхода контура; знак «-» перед показывает, что направление встречно обходу контура.

Для контура .

Используя законы Кирхгофа, можно для любой разветвленной электрической цепи составить необходимое число уравнений, путем совместного решения которых можно найти все определяемые величины (например, токи), а также установить зависимости между ними.

1.4.2. Преобразование ЭЦ с различным соединением сопротивлений

1. Последовательным соединением сопротивлений называется такое, когда конец первого сопротивления соединяется с началом второго, конец второго сопротивления с началом третьего и т.д. Начало первого сопротивления и конец последнего подключаются к источнику питания или к каким-либо точкам ЭЦ (рис. 1. 9.). Во всех сопротивлениях протекает один и

Рис. 1.9.
тот же ток.

Рис. 1. 9.

Ток в цепи, напряжения на сопротивлениях и потребляемые ими мощности определяются следующими соотношениями.

1. Эквивалентное сопротивление электрической цепи .

2. Ток в сопротивлениях цепи .

3. Напряжение и мощность, подводимые к электрической цепи с последовательным соединением сопротивлений равны, соответственно, сумме напряжений и мощностей ,

4. Напряжение и мощности распределяются пропорционально сопротивлениям .

2. При параллельном соединении сопротивлений соединяются между собой как начало всех сопротивлений, так и их концы (рис. 1.10.).

Характерным для параллельного соединения является одно и то же напряжение на зажимах всех сопротивлений. Параллельно соединяются обычно различные приемники электрической энергии, рассчитанные на одно и то же напряжение. При параллельном соединении не требуется согласовывать номинальные данные приемников, возможно включение и отключение любых приемников независимо от остальных, а при выходе из строя любого из них остальные остаются включенными.

б)
а)
Рис. 1. 10.

Параллельное соединение можно применить, если требуется уменьшить сопротивления какого-либо участка электрической цепи, как показано на рис. 1.10.б).

Токи и мощности параллельно соединенных ветвей рис.1.10.а) при не зависят друг от друга.

1. Общий ток равен сумме токов параллельно соединенных ветвей

где: − эквивалентная проводимость, равная

− эквивалентное сопротивление, .

2. Токи и мощности в ветвях в ветвях вычисляются по формулам ; ; ; .

3. Отношение токов и мощностей равно отношению проводимостей и обратно пропорционально отношению сопротивлений

.

При увеличении параллельно соединенных сопротивлений эквивалентная проводимость ЭЦ увеличивается, а эквивалентное сопротивление уменьшается, что приводит к увеличению тока. Если напряжение остается const , то увеличивается также общая мощность.

3. Смешанным или последовательно-параллельным называется такое соединение сопротивлений, при котором на одних участках ЭЦ сопротивления соединены параллельно, а на других последовательно.

Анализ и расчет ЭЦ со смешанным соединением сопротивлений производится методом преобразований. Электрическая цепь (рис. 1.11.а) заменяется последовательно эквивалентными цепями до образования схемы, изображенной на рис. 1.11.б).

б)
а)
Рис. 1.11.

В соединении «треугольником» конец одного из сопротивлений соединяется с началом следующего и т.д., а узлы a,b,c подключаются к остальной части ЭЦ. В соединении «звездой» все концы соединяются вместе, а начала фаз подключаются к схеме. Если заменить сопротивление , , , соединенные в треугольник, эквивалентными сопротивлениями, соединенными звездой, то получим цепи со смешанным соединением сопротивлений.

Преобразование «звезды» в «треугольник»

б)
а)
Рис. 1. 12.

После замены токи и направления должны остаться без изменений.

Для «треугольника» ;

Для соединения звездой

По условию эквивалентности эквивалентные сопротивление обеих схем равны , следовательно, можно записать

1) ;

Структуры соединением «треугольник» и «звезда» по отношению к узлам симметричны, поэтому циклично запишем

2) ;

3) .

Сложим 1) и 3), вычтем 2), всё поделим на 2, получим

, , .

Если в «треугольнике» равны, то и в «звезде» равны: .

Возможно обратное преобразование звезды из резистивных элементов в эквивалентный треугольник. Для этого надо попарно перемножить 1) и 3) и сложить, затем вынести общий множитель и полученное уравнение разделить на 3)уравнение, т.е. . Далее поочередно поделить то же уравнение на и .

Путем циклической подстановки индексов при преобразовании звезды в треугольник получим

, , .

На рис. 1.13. поясняется упрощение схемы путем последовательной замены эквивалентными цепями при преобразовании «треугольника» в «звезду».

Рис. 1.14
В схеме рис. 1.14.два независимых контура. Допустим, что в левом контуре по часовой стрелке течет контурный ток , в правом – контурный ток . Для каждого из контуров составим уравнение по II закону Кирхгофа.

Для первого контура , или

Для второго контура , или

В уравнении для 1-го контура множитель при токе , являющийся суммой сопротивлений первого контура, обозначим через . Множитель при токе , взятый со знаком «-» , обозначим через . Уравнения для 1-го и 2-го контуров примут вид , , здесь

; ;

где − полное или собственное сопротивление первого и второго контуров, соответственно.

− взаимное сопротивление смежной ветви между первым и вторым контурами, взятые со знаком «-» .

− контурные ЭДС первого и второго контуров, равные алгебраической сумме ЭДС, входящих в эти контуры.

Со знаком «+» входят ЭДС, направление которых совпадает с направлением обхода контура.

Отметим, что члены, содержащие полные контурные сопротивления, положительны, а взаимные – отрицательны.

Если в схеме будет три контура, то система уравнений примет вид

Или в матричной форме

, , .

Если в электрической цепи имеется «n» независимых контуров, то количество уравнений тоже равно n . Решение удобно проверить методами Крамера и Гаусса.

Общее решение системы n уравнений относительного тока

где и − определители системы.

По найденным токам ищем действительные токи ; ; ; ; , находим из 1-го закона Кирхгофа.

1.4.4. Метод узловых потенциалов.

б)

Рис. 1. 15.
По 1-му закону Кирхгофа для 1-го узла

, ;

или через проводимости

для 2-го узла

, ,

1) Узловая проводимость узла − это сумма проводимости ветвей, сходящихся в данном узле.

; ; .

2) Взаимная проводимость двух любых узлов − сумма проводимости ветвей, включённых между этими узлами.

3) Узловой ток − сумма произведений ЭДС на проводимости () ветвей, сходящихся в данном узле. Если ЭДС направлена к узлу, то берем ее как «+»; от узла «−».

; ; .

4) В системе уравнений все члены, содержащие узловые проводимости берутся со знаком «+», а содержащие взаимные проводимости − со знаком «-».

Решив систему уравнений, найдем потенциалы всех узлов. По этим потенциалам определяем токи ветви ,

если ток получился со знаком «-», значит в действительности он направлен в противоположную сторону.

; ; ; ; .