Автоматическое зарядное устройство для свинцовых аккумуляторов. Автоматическое устройство для зарядки свинцово-кислотных аккумуляторных батарей

Предлагаем идею изготовления зарядного устройства для любых свинцово-кислотных аккумуляторов от мотоциклов или авто, при минимальных затратах сил. Создано оно на основе импульсного блока питания 14 В / 5 A. Можно использовать практически любой готовый импульсный источник питания с выходным напряжением 12 — 15 В, который подвергнется небольшой доработке. Кстати, похожий фокус можно провернуть и из компьютерного БП —


Импульсный блок питания на 14 вольт

Особенности зарядного устройства

  • напряжение предельное 14.2 V
  • минимальное выходное напряжение (АКБ разряжен) 6 V
  • ток зарядки переключается 0.8 A / 3.5 A

Дополнительно понадобятся LED индикаторы: зеленый и красный, NPN транзистор. Красный светодиод указывает на зарядку аккумулятора, а зеленый на достижение предельного напряжения (зарядка завершена).

Предупреждаем: в сетевом адаптере присутствуют напряжения, опасные для жизни и здоровья. За подобную доработку следует браться только опытным электронщикам, которые имеют опыт работы с импульсными блоками питания!

Модификация касается только элементов на вторичной стороне трансформатора.
Идея основана на коррекции (при необходимости) выходного напряжения блока питания, добавления ограничителя тока и светодиодов, информирующих о режиме работы зарядного устройства.

Схема доработки


Оригинал схемы ИБП
Схема доработки

Последовательность доработки ИБП

1) Выбор выходного напряжения.

Адаптеры питания часто для стабилизации выходного напряжения, используют TL431. Выходное напряжение задает делитель R1 и R2, где напряжение на R2 всегда равно 2.5 В. выходное напряжение (в режиме стабилизации напряжения, аккумулятор заряжен) составляет 2.5 В х (1 + R1 / R2). Для получения напряжения 14.2 В, если блок питания дает 12 В, нужно увеличить R1 или уменьшить R2. Данный блок питания выдает 14.1 В, поэтому решено не изменять данные делителя.

2) Добавление светодиода зеленого цвета и резистора R4 параллельно оптрону.

В режиме стабилизации напряжения, TL431 управляет током светодиода оптрона, чтобы таким образом получить стабилизацию. Если напряжение на выходе слишком низкое — TL431 закрывается и через оптрон ток не течет. Поставив зеленый светодиод, получаем информацию о достижении режима стабилизации напряжения, то есть заряда аккумулятора. Во время нормальной работы ток оптрона составляет всего около 0.5 мА, то есть зеленый диод горит слабо. Чтобы его свечение было ярче, параллельно оптрону присоединяем резистор R4 номиналом 220 Ом. Он увеличивает ток зеленого диода примерно до 5 мА.

3) Добавление петли гистерезиса ограничения тока

Обычно, за ограничение тока отвечает микросхема, управляющая работой преобразователя. Если на выходе есть сильная перегрузка, например при коротком замыкании — контроллер не в состоянии самостоятельно запустить БП. В системе зарядки аккумулятора надо сделать так, чтобы этот режим ограничения тока стал нормальным режимом. С этой целью добавим элементы: R5 (резистор мощности), R6 (около 1 кОм, защита базы транзистора при коротком замыкании выхода), транзистор T1 и красный светодиод. Значение ограничения тока равна ~ 0.65 В / R5. Резистор R5 по умолчанию 0.82 Ом (0.8 А), который включается параллельно с переключателем, резистором 0.22 Ом / 5 В (тогда ток будет 3.5 А). Резисторы довольно сильно греются — что является самым большим недостатком принятого решения. Вместо ограничения с одиночным транзистором, можно использовать операционного усилителя или токовое зеркало.

Можно ли применить БП от ноутбука?

К сожалению, для переделки не подходят блоки питания от ноутбуков, дающие 19.5 В на выходе. Это связано с тем, что напряжение производится с помощью вспомогательной обмотки и самоподдерживающейся работой устройства. Если понизим напряжение с 19.5 до 14.2 В — это также уменьшит вспомогательные напряжение питания чипа контроллера преобразователя. При 14.2 на выходе система будет работать хорошо, но снижение напряжения ниже 12 В (при разряженном аккумуляторе), преобразователь не будет в состоянии стартануть. С этим же БП старт проходит даже от 6 В — то есть имеется большой запас.


Переделанный БП в ЗУ

Возможные улучшения

Как известно, герметичные свинцово-кислотные аккумуляторы могут быть постоянно подключенными к зарядному устройству, то есть быть в режиме подзарядки. Чтобы знать, когда аккумулятор полностью заряжен, зарядное устройство должно быть оснащено каким-либо индикатором. Ниже описывается один из вариантов зарядного устройства снабженного индикатором заряда.

Описание зарядного устройства для свинцово-кислотных аккумуляторов

Напряжение на схему зарядного устройства подается на клеммы Х1 и Х2 от внешнего источника постоянного напряжения (12…20 вольт). Зарядный ток поступает на индикатор включения зарядного тока (светодиод HL1), транзистор VТ1 и напряжения зарядки . Стабилизированное зарядное напряжение подключается к клеммам Х3 и Х4, которые подключаются к свинцово-кислотному аккумулятору.

Индикатор тока зарядки включает в себя датчик тока (резистора R1), ток зарядки протекающий через него создает падение напряжения на нем. Из-за падения напряжения открывается транзистор VТ1, в коллектор которого подключен индикатор – светодиод HL1.

Величина падения напряжения, при котором открывается транзистор VT1, устанавливается резистивным делителем на сопротивлениях R3 и R4. Если ток зарядки меньше установленного уровня тока (ограничение тока устанавливается подстроечным резистором R4), светодиод HL1 не светится. С увеличением зарядного тока, свечение светодиода также плавно увеличивается.

В качестве стабилизатора напряжения зарядки используется стабилизатор регулируемым выходным напряжением LM317. В соответствии с используемым уровнем напряжения и зарядного тока стабилизатор LM317должн быть установлен на хороший теплоотвод.

Подстроечный резистор R5 регулирует выходное напряжение на клеммах Х3 и Х4. Для батарей с номинальным напряжением 6 В выходное напряжение заряда должно составлять 6,8…6,9 В, для аккумуляторов с номинальным напряжением 12 В это выходное напряжение будет уже 13,6…13,8 В.

Необходимо отметить, что входное напряжение от внешнего источника постоянного напряжения должно быть больше напряжения на выходе зарядника примерно на 5 вольт (падение напряжения на R6 и LM317).

Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение - у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво (пока еще) рассудив, что было бы неплохо наломать этих самых дров пока не стемнело. А дров надо было на два костра - для шашлыков и для обогрева - освещения места празднования. Ну что я вам хочу сказать... на следующий день мне с трудом удавалось разогнуться, поскольку для того, чтобы от костра света было достаточно туда надо постоянно подбрасывать дрова, которые надо рубить в лесу, в котором после захода солнца стало темно, как сами знаете где и батареи в фонарях приходилось экономить и освещать место пьянства костром, для которого надо рубить дрова. Я повторяюсь, да? Ну вот той ночью у меня таких повторений было очень много. В связи с чем на следующий день возникло два вопроса - "я отдыхал?" Или "где и как сделать, чтобы такого больше не случалось?"

Прежде всего батареи - ясно, что нужны аккумуляторы, но посмотрев на цены современных никель-кадмиевых аккумуляторов моя жаба категорически отказалась их покупать. Тут я вспомнил про УПС-ы - ну знаете, такие бандуры для того, чтобы ваш комп не вырубился в самый неподходящий момент, когда вы заканчиваете проходить сапера 100х100, а добрый сосед уже подключил самопальный сварочный агрегат в розетку и радостно ухмыльнувшись включил его, обесточивая, таким образом пол-дома.

Так вот, в этих бандурах применяются герметичные свинцовые аккумуляторы - их еще называют гелевыми. По стоимости они не сравнимы с Ni-Cd аккумуляторами - первые стоят значительно меньше последних. Поехал я в магазинчик и прикупил себе вполне даже средненький аккумулятор с напряжением 12 вольт и ёмкостью 7,2 ампер-часа.

Рис.1 Фото аккумулятора.

Далее все было просто - берем 10-ти ваттную автомобильную лампочку, вешаем её на длинном проводе на дерево и подключаем к сабжу - свет готов. А для подключение магнитолы ваяем простенький стабилизатор на КРЕН8А или её буржуйском аналоге LM7809, прикручиваем провода к клемам в батарейном отсеке - e voila - имеем свет и музыку. Должен вам сказать, что подобная схема уже испытывалась - хватает на всю ночь непрерывной работы и аккумулятор до конца не разряжается.

Но вы же понимаете, что все хорошо до конца не бывает - должна быть где то капелька отходов чловеческого метаболизма, которая должна отравить всю идиллию. В данном случае засада в том, что эти аккумуляторы нельзя заряжать обычными зарядными устройствами для автомобильных аккумуляторов. Обычные кислотно-свинцовые аккумуляторы заряжаются постоянным по величине током, при этом напряжение на клеммах все время растет и когда оно достигает определенной величины - электролит в аккумуляторе закипает, что свидетельствуе об окончании заряда. Давайте себе представим, что будет, когда закипит герметичный аккумулятор. Я так полагаю, что жертв и разрушений вряд ли удасться избежать. Посему эти ящики заряжают по-другому: ток заряда устанавливают равным 0,1С, где С - это ёмкость аккумулятора, причем, зарядный ток ограничивают, поскольку этот товарищ "неудовлетворенный желудочно" и готов сожрать все, что ему дают, напряжение стабилизируют и устанавливают в пределах 14-15 вольт. В процессе заряда напряжение остается практически неизменным, а ток будет уменьшаться от установленного, до 20-30мА в самом конце заряда. То есть, нужно было собрать зарядное устройство.

Возиться ужасно не хотелось, но тут выручили буржуи - ST Microelectronics - у них, оказывается есть почти готовое решение - микросхема L200C. Эта микросхема представляет собой стабилизатор напряжения с программируемым ограничителем выходного тока. Документация на эту микросхему лежит тут: www.st.com/stonline/products/literature/ds/1318.pdf Схема зарядного устроства на рисунке 2 - это практически типовая схема включения


Рис.2

Особо описывать в общем то и нечего, остановлюсь только на паре моментов. Прежде всего - токозадающие резисторы R2-R6. Их мощность должна быть не меньше указанной на схеме, а лучше больше. Ну если вы, конечно, не фанат дымовых спецэффектов и не тащитесь от вида почерневших резисторов.


Рис 3.1 Устройство на макетной плате

Микросхему, разумеется, надо установить на радиатор, причем, тоже не жадничать - все это хозяйство расчитано на долговременную работу, поэтому, чем легче будет тепловой режим элементов, тем лучше для них, а значит и для вас. Резистором R7 подстраивается выходное напряжение в пределах 14-15 вольт. Диоды лучше брать наши, отечественные в металлических корпусах, тогда их не надо устанавливать на радиаторы. Напряжение на вторичной обмотке трансформатора 15-16 вольт. Лично я никакой платы не делал, не так уж много тут деталей - собрал все на макетке. Что получилось видно на фотке.


Рис 3.2 Все в сборе, только без корпуса

Работает все, как и предсказано в теории - ток, по началу, большой, к концу заряда опустился до незначительного и в таком состоянии живет уже несколько дней. Кстати, фирма производитель рекомендует как раз такой, незначительный ток в течении длительного времени для сохранения ёмкости батареи.


Рис 4.2 Собранное устройство на плате

Скачать печатную плату в форматах LAY и Corel для плоттерной резки на пленке вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Стабилизатор напряжения L200C 1 В блокнот
VD1-VD5 Диод

Д242

5 1N5400 В блокнот
C1 Электролитический конденсатор 4700 мкФ 25 В 1 В блокнот
C2 Конденсатор 1 мкФ 1 В блокнот
R1 Резистор

820 Ом

1 В блокнот
R2 Резистор

3 Ом

1 0.25 Вт В блокнот
R3 Резистор

0.33 Ом

1 2 Вт В блокнот
R4 Резистор

0.75 Ом

1 1 Вт В блокнот
R5 Резистор

1.5 Ом

1 0.5 Вт В блокнот
R6 Резистор

Со временем тратят свой заряд, и его необходимо периодически восстанавливать. Аспекты этого процесса и будут рассмотрены в рамках статьи.

Что называют зарядкой

Так называют процесс, который является обратным разрядке. Во время зарядки свинцово-кислотных герметичных аккумуляторов они запасаются энергией, питаясь при этом от внешнего источника тока. В конечном результате накапливается заряд, что равен емкости. А как выглядят зарядные устройства для герметичных свинцовых кислотных аккумуляторов? Они представляют собой преобразователь энергии и два вывода, каждый из которых подключается к Герметичный необслуживаемый свинцово-кислотный аккумулятор при подключении в сеть начнёт процесс восстановления и превращения электрической энергии (подаваемой из сети) в химическую. Чтобы в последующем, как только возникнет необходимость, он мог проводить обратный процесс и обеспечивать энергоснабжение различных устройств и приборов.

Заряжаем просто и безопасно

Для этого необходимо воспользоваться методом «ток-напряжение». В чем он заключается? Первоначально аккумулятор заряжается постоянным током. Когда необходимые показатели достигаются, начинает идти поддержка постоянного напряжения. Чтобы узнать начальный ток зарядки, обычно достаточно внимательно осмотреть корпус - там указывается данный параметр. Обычно эта величина составляет до 0,3 Чтобы было более понятно, представим, что у нас есть устройство с параметром в 100 А/час. Тогда ток заряда не должен превышать 30А. Но это безопасный максимум, многие производители в своих зарядных устройствах используют правило десяти процентов. Это позволяет заряжать аккумуляторы без наименьшей боязни сделать что-то не так и вывести его из строя. А сколько же нужно заряжать? Если начальный ток равен 20% емкости, то резерв аккумулятора будет восстановлен на 90% примерно за 5-6 часов. На оставшиеся 10% понадобится примерно сутки. Вот такие особенности своего функционирования имеет зарядное для герметичных свинцово-кислотных аккумуляторов. Можно ли как-то ускорить этот процесс? Да, и мы сейчас рассмотрим, как.

Быстрая зарядка свинцово-кислотных герметичных аккумуляторов

Нормой считается зарядка постоянным током при напряжении в 13,8. Больше этого не рекомендуется из-за возможных негативных последствий. Но если они вас не страшат, то можете повысить напряжение к 14,5 В (это для аккумуляторов на 12 В). В результате аккумулятор при 20% показателе зарядится за 6 часов. Применяется такой способ исключительно при работе в циклическом режиме.

Влияние температуры

Всё, что было написано выше, относится только к случаю, когда температура составляет 20 градусов Цельсия. При других показателях необходимо вводить компенсацию зарядного напряжения. Заряжать свинцово-кислотные аккумуляторы можно в диапазоне от -15 до 40 градусов. Чем большая температура, тем меньшим должно быть напряжение для избегания перезарядки. В противоположном случае данный показатель, наоборот, следует увеличить, чтобы избежать недозарядки. Герметичный необслуживаемый свинцово-кислотный аккумулятор из-за этого желательно заряжать именно в условиях 20 градусов Цельсия плюс-минус несколько. Конечно, можно и высчитывать каждый раз, но это не всегда удобно. В качестве идеального места по температурному параметру часто выбирают свои жилища, но тогда необходимо позаботиться о качественном проветривании места зарядки как во время этого процесса, так и через несколько часов после его окончания.

Последствия при несоблюдении техники безопасности

Описанные выше способы нацелены на быструю и безопасную зарядку. При этом ставится задача максимального сохранения ресурса свинцово-кислотного аккумулятора путём минимизации факторов его старения. А теперь давайте осмотрим отклонения. Что будет, если использовать ток больший, чем максимально допустимый? Первоначально следует отметить, что герметичные свинцово-кислотные аккумуляторы не смогут полностью зарядиться. Также из-за уменьшения эффективности механизма рекомбинации газов электролит будет терять воду. Поэтому даже разовой зарядки хватит, чтобы сократить ресурс работы.

А что будет, если уменьшить ток к 0,5 проценту от емкости? Герметичные свинцово-кислотные аккумуляторы зарядятся и в таком случае, но продолжаться данный процесс будет несколько недель. К тому же устройство будет находиться в состоянии, что эквивалентно разряженному. А это приводит к сульфатации и ускоренному старению. Конечно, одной зарядки с малым током недостаточно для серьезных повреждений, но ими лучше не пользоваться. Также необходимо следить и за конечным напряжением, чтобы не произошло недозаряда устройства и уменьшения его ресурса.

А почему свинцово-кислотные аккумуляторы имеют такой диапазон температур для зарядки? Дело в том, что при выходе из них прекращается работа механизма рекомбинации газов, и электролит теряет свою воду.

Всё ли хорошо было сделано

Чтобы получить хороший результат, необходимо соблюдать требуемые параметры в необходимых рамках. Главное место в этом вопросе должны занимать ток и напряжение (учитывайте температуру). Тогда герметичные свинцово-кислотные аккумуляторы будут заряжаться успешно и смогут прослужить длительное время. Если же вокруг есть электролит, белый налёт или пузырьки, то восстановление характеристик устройства было совершено неправильно. Для определения состояния можно использовать тестер. Восстановление герметичных свинцово-кислотных аккумуляторов осуществляется с помощью специальных зарядных устройств (которым может потребоваться несколько суток) или дополнительных механических действий (как-то подлить электролит).

Заключение

Как видите, процесс зарядки свинцово-кислотных аккумуляторов нельзя назвать сложным. При соблюдении техники безопасности непросто будет получить что-то не то. Но напоследок хочется порекомендовать заряжать их в отдельных помещениях, а если устройства восстанавливают в условиях жилого дома, то необходимо позаботиться о качественном проветривании во время процесса, а также нескольких часов после него. Эти меры безопасности необходимы из-за того, что, пускай и в микроскопических дозах, но свинец может попадать в воздух, а через него и в организм, откуда он очень медленно выводится и постоянно оказывает отравляющее воздействие.

Зарядное устройство представляет собой параметрический стабилизатор напряжения 14,2 В с регулирующим элементом на полевом транзисторе. Цепь затвора мощного полевого транзистора VT1 питается от отдельного источника напряжением 30 В.

Принципиальная схема зарядного устройства
Для получения выходного напряжения 14,2 В необходимо подать на затвор транзистора VT1 стабилизированное напряжение около 18 В, поскольку напряжение отсечки полевого транзистора IRFZ48N достигает 4 В. Напряжение на затворе формирует параллельный стабилизатор DA1, питаемый через резистор R2 от источника напряжением 30 В. Стабистор VD3 введен для компенсации изменения ЭДС полностью заряженной батареи при изменении внешней температуры.

Если к зарядному устройству подключить разряженную аккумуляторную батарею (показатель глубоко разряженной батареи - ЭДС менее 11 В на ее выводах), то транзистор VT1 перейдет из активного режима стабилизации в полностью открытое состояние из-за большой разности между напряжением на затворе и на истоке: 18 В - 11 В = 7 В, это на 3 В больше напряжения отсечки 7 В - 4 В = 3 В.

Трех вольт для открывания транзистора IRFZ48N вполне достаточно. Сопротивление открытого канала этого транзистора станет пренебрежимо мало. Поэтому зарядный ток будет ограничен только резистором R3 и станет равным:
(23 В - 11 В) / 1 Ом = 12 А.
Это расчетное значение тока. Практически же он не превысит 10 А по причине падения напряжения на вторичной обмотке трансформатора и на диодах моста VD2, при этом ток будет пульсировать с удвоенной сетевой частотой. Если зарядный ток все же превысит рекомендованное значение (0,1 от емкости батареи), то он не повредит аккумуляторную батарею, поскольку вскоре начнет быстро спадать. По мере приближения напряжения батареи к напряжению стабилизации 14,2 В ток зарядки будет уменьшаться, пока не прекратится вовсе. В таком состоянии устройство может находиться долгое время без риска перезарядить батарею.

Лампа HL1 индицирует включение устройства в сеть, а HL2 сигнализирует, во-первых, об исправности предохранителя FU2 и, во-вторых, о подключении заряжаемой батареи. Кроме того, лампа HL2 служит небольшой нагрузкой, облегчающей точную установку выходного напряжения.

В устройстве необходимо применить сетевой трансформатор габаритной мощностью не менее 150 Вт. Обмотка II должна обеспечивать напряжение 17...20 В при токе нагрузки 10 А, а обмотка III - 5...7 В при 50...100 мА. Транзистор IRFZ48N можно заменить на IRFZ46N. Если устройство применять для зарядки аккумуляторных батарей емкостью не более 55 А⋅ч, то подойдет транзистор IRFZ44N (или отечественный. КП812А1).

Выпрямительный мост GBPC15005 заменим четырьмя диодами Д242А, Д243А или подобными. Вместо КД243А возможно применить диод КД102А или КД103А. Резистор R3 изготавливают из нихромовой проволоки диаметром не менее 1 мм. Ее наматывают на керамический стержень, а каждый из выводов зажимают под винт М4 с гайкой и лепестком для пайки. Монтировать резистор следует так, чтобы ничто не препятствовало его естественному охлаждению потоком воздуха.

Стабистор КС119А заменят четыре диода КД522А, соединенных последовательно согласно. Вместо TL431 подойдет его отечественный аналог КР142ЕН19А. Резистор R6 следует выбрать из серии СП5.

Транзистор VT1 необходимо установить на теплоотвод с полезной площадью 100...150 см 2 . Тепловая мощность в процессе зарядки будет распределяться между транзистором и резистором R3 следующим образом: в начальный момент, когда транзистор открыт, вся тепловая мощность будет выделяться на резисторе R3; к середине зарядного цикла мощность распределится между ними поровну, и для транзистора это будет максимум нагревания (20...25 Вт), а к концу зарядный ток уменьшится настолько, что и резистор, и транзистор останутся холодными.

После сборки устройства необходимо только до подключения аккумуляторной батареи подстроечным резистором R6 установить на выходе пороговое напряжение 14,2 В.

Описанное в статье устройство просто и удобно в эксплуатации. Однако необходимо иметь в виду, что далеко не все экземпляры батарей имеют в заряженном виде ЭДС, равную 14,2 В. Мало того, в течение срока эксплуатации она не остается постоянной в силу деструкционных изменений в пластинах батареи. Значит, если зарядное устройство отрегулировано так, как рекомендует автор, некоторые батареи окажутся недозаряженными, а другие - будут перезаряжаться и могут "закипеть". Зависит ЭДС и от температуры батареи.

Поэтому для каждого экземпляра батареи надо предварительно определить оптимальное значение его ЭДС путем контролируемой зарядки до первых признаков "закипания" и с учетом температуры установить в зарядном устройстве это значение. Целесообразно также в дальнейшем периодически (хотя бы раз в год) проверять ЭДС и корректировать установку порогового напряжения зарядного устройства.

В. Костицын
Радио 3-2008
www.radio.ru