Защита блока питания от кз. Защита от короткого замыкания Схема защиты от короткого замыкания

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания - сетевыми, импульсными и аккумуляторами постоянного тока.

Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Силовая часть - мощный полевой транзистор - в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.

Схема одновременно является защитой от переполюсовки питания , перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.

Шунт можно сделать также из резисторов с мощностью 1-3 ватт.


Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.


При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным.

Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные - IRF3205, IRL3705, IRL2505 и им подобные.



Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

С уважением - АКА КАСЬЯН

Схема подключения транзистора к блоку питания приведена на рис.1, а вольт-амперные характеристики транзистора для различных сопротивлений резистора R1 - на рис.2. Работает защита так. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25 А, то падение напряжения на полевом транзисторе не превышает 1,5 В, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45...0,5 А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на "здоровье" деталей блока питания.

Рис. 2

Уменьшить ток короткого замыкания можно увеличением сопротивления резистора R1. Нужно выбирать такой резистор, чтобы ток короткого замыкания был примерно вдвое больше максимального тока нагрузки.
Подобный способ защиты особенно удобен для блоков питания со сглаживающим RC-фильтром - тогда полевой транзистор включают вместо резистора фильтра (такой пример показан на рис. 3).
Поскольку во время КЗ на полевом транзисторе падает почти все выпрямленное напряжение, его можно использовать для световой или звуковой сигнализации. Вот, к примеру, схема включения световой сигнализации - рис.7. Когда с нагрузкой все в порядке, горит светодиод HL2 зеленого цвета. При этом падения напряжения на транзисторе недостаточно для зажигания светодиода HL1. Но стоит появиться КЗ в нагрузке, как светодиод HL2 гаснет, но зато вспыхивает HL1 красного свечения.

Рис. 3

Резистор R2 выбирают в зависимости от нужного ограничения тока КЗ по высказанным выше рекомендациям.
Схема подключения звукового сигнализатора приведена на рис. 4. Его можно подключать либо между стоком и истоком транзистора, либо между стоком и затвором, как светодиод HL1.
При появлении на сигнализаторе достаточного напряжения вступает в действие генератор ЗЧ, выполненный на однопереходном транзисторе VT2, и в головном телефоне BF1 раздается звук.
Однопереходный транзистор может быть КТ117А- КТ117Г, телефон - низкоомный (можно заменить динамической головкой небольшой мощности).

Рис. 4

Остается добавить, что для слаботочных нагрузок в блок питания можно ввести ограничитель тока КЗ на полевом транзисторе КП302В. При выборе транзистора для других блоков следует учитывать его допустимую мощность и напряжение сток - исток.
Конечно, подобную автоматику можно ввести и в стабилизированный блок питания, не имеющий защиты от КЗ в нагрузке.

Практически каждый начинающий радиолюбитель стремится вначале своего творчества сконструировать сетевой блок питания, чтобы впоследствии использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы этот блок питания "подсказывал" об опасности выхода из строя отдельных узлов при ошибках или неисправностях монтажа.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно.

Схема, изображенная на рис.1, не только сигнализирует о коротком замыкании, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Электрическая принципиальная схема самодельного блока питания с защитой от коротких замыканий

Рассмотрим работу самодельного блока питания . Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1...VD4, собранными по мостовой схеме. Конденсатеры С1 и С2 препятствуют проникновению в сети высокочастотных помех, а оксидный конденсатор С3 сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В.

Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А - 6 В, при ДВ14Б - В В, при ДВ14Г -10 В, при ДВ14Д -12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора.

Рассмотрим работу защитного устройстваблока питания . Узел защиты от КЗ в нагрузке состоит из германиевого п-р-п транзистора VT1, электромагнитного реле К1, резистора R3 и диода VD5. Последний в данном случае выполняет функцию стабистора, поддерживающего на базе VT1 неизменное напряжение около 0,6 - 0,7 В относительно общего.

В обычном режиме работы стабилизатора транзистор узла защиты надежно закрыт, так как напряжение на его базе относительно эмиттера отрицательное. При возникновении короткого замыкания эмиттер VT1, как и эмиттер регулирующего VT3, оказывается соединенным с общим минусовым проводом выпрямителя.

Другими словами, напряжение на его базе относительно эмиттера становится положительным, вследствие чего VT1 открывается, срабатывает К1 и своими контактами отключает нагрузку, светится светодиод HL3. После устранения короткого замыкания напряжение смещения на эмиттерном переходе VT1 снова становится отрицательным и он закрывается, реле К1 обесточивается, подключая нагрузку к выходу стабилизатора.

Детали для изготовления блока питания. Электромагнитное реле любое с возможно меньшим напряжением срабатывания. В любом случае должно соблюдаться одно непременное условие: вторичная обмотка Т1 должна выдавать напряжение, равное сумме напряжений стабилизации и срабатывания реле, т.е. если напряжение стабилизации, как в данном случае 9 В, а U сраб реле 6 В, то на вторичной обмотке должно быть не менее 15 В, но и не превышать допустимое на коллекторе-эмиттере применяемого транзистора. В качестве Т1 на опытном образце автор использовал ТВК-110Л2. Печатная плата устройства изображена на рис.2.

Печатная плата блока питания

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:

Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве . Материал подготовил AKV.

В качестве устройства электронной защиты источников питания можно использовать предлагаемый электронный предохранитель, включаемый между источниками и нагрузкой. Схема работает следующим образом. Когда ток нагрузки не превышает заранее установленного тока срабатывания, транзистор VT2 открыт, и падение напряжения на нем минимально. При увеличении тока нагрузки свыше заданного, увеличивается падение напряжения на транзисторе VT2, в связи с чем увеличивается напряжение, поступающее через R4 на базу VT1. Транзистор VT1 начинает открываться.

Процесс происходит лавинообразно благодаря наличию положительной обратной связи через резистор R4. В результате VT2 закрывается, и через нагрузку ток не протекает. Одновременно загорается сигнал о перегрузке. Приведенные на схеме номиналы резисторов соответствуют напряжению 9 В и току срабатывания 1 А. При необходимости изменить параметры предохранителя необходимо пересчитать величины сопротивлений R3 и R4.

Для питания собираемых конструкций радиолюбители нередко используют простейшие блоки, состоящие из понижающего трансформатора и выпрямителя с конденсатором фильтра. И, конечно, в таких блоках нет никакой защиты от короткого замыкания (КЗ) в нагрузке, хотя оно подчас приводит к выходу из строя выпрямителя и даже трансформатора. Применять в таких блоках питания в качестве элемента защиты плавкий предохранитель не всегда удобно, да и, кроме того, быстродействие у него невысокое. Один из вариантов решения проблемы защиты от КЗ - включение последовательно с нагрузкой полевого транзистора средней мощности с встроенным каналом. Дело в том, что на вольт-амперной характеристике такого транзистора есть участок, на котором ток стока не зависит от напряжения между стоком и истоком. Поэтому на этом участке транзистор работает как стабилизатор (ограничитель) тока.


Рис.1

Схема подключения транзистора к блоку питания приведена на рис.1, а вольт-амперные характеристики транзистора для различных сопротивлений резистора R1 - на рис.2. Работает защита так. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25 А, то падение напряжения на полевом транзисторе не превышает 1,5 В, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45...0,5 А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на "здоровье" деталей блока питания.

О. СИДОРОВИЧ, г. Львов, Украина

Отличительная особенность предлагаемого устройства - малое падение напряжения в номинальном режиме. Кроме того, после устранения аварийной ситуации оно автоматически восстанавливает свою работоспособность.

Устройство предназначено для защиты от замыкания в нагрузке и перегрузки по току. Его включают между источником питания и нагрузкой. Преимущество предлагаемого устройства по сравнению с описанным, например, в - малое падение напряжения в номинальном режиме, а также автоматический возврат в рабочее состояние после устранения причины аварии. Последнее особенно важно при кратковременных перегрузках.

Основные технические параметры

Напряжение питания, В..........12

Номинальный ток, А..............1

Ток срабатывания защиты, А......1,2

Падение напряжения при номинальном токе, не более, В......................0,6

Устройство содержит транзисторный коммутатор, узлы защиты и запуска. Основной элемент - коммутатор, выполненный на транзисторе VT5 (рис. 1).

Л. МОРОХИН, с. Макарова Московской обл.

Предлагаемое устройство целесообразно использовать совместно с регулируемым стабилизатором напряжения, не имеющим специальных узлов защиты.

Устройство предназначено для защиты регулирующего элемента стабилизатора напряжения от токовой и температурной перегрузок. Защита срабатывает при:

Превышении током нагрузки допустимого (установленного) значения;

Замыкании на выходе стабилизатора;

Превышении допустимой рассеиваемой мощности регулирующим элементом (нагрева его корпуса выше 50...70"С).

Датчик температуры - терморезистор RK1 (рис. 1), смонтированный непосредственно на регулирующем элементе стабилизатора. При увеличении напряжения на нем открывает транзистор, который, в свою очередь, включает тринистор VS1.

Кнопки SB1 и SB2 позволяют отключать и подключать нагрузку к источнику питания, что необходимо в процессе налаживания питаемого устройства. Если защита срабатывает в результате перегрева регулирующего элемента, нагрузка не будет подключена до тех пор, пока не уменьшится его температура, о чем судят по выключению светодиода HL1.

И. АЛЕКСАНДРОВ, г. Курск

При налаживании различной радиоэлектронной аппаратуры желательно пользоваться блоком питания с встроенной и регулируемой электронной защитой по току нагрузки. Если имеющийся в вашем распоряжении блок не имеет такой защиты, ее можно выполнить в виде приставки, включаемой между выходными гнездами блока и нагрузкой. Таким образом, приставка-предохранитель в случае превышения заданного максимального тока нагрузки мгновенно отключит ее от блока питания.

Электронный предохранитель (см. рисунок) содержит мощный транзистор VT2, который включен в минусовый провод питания, два стабилизатора тока на полевых транзисторах - один регулируемый (на VT1), в другой - нерегулируемый (на VT3), и чувствительный элемент - тринистор VS1. Управляющее напряжение на тринистор поступает с датчика тока, в роли которого выступает резистор R1 весьма малого сопротивления (0,1 Ома), и с резистора R2. Данный тип тринистора включается при напряжении на управляющем электроде (относительно катода) 0,5...0,6 В.

Ток нагрузки создает падение напряжения на резисторе R1, которое для тринистора является открывающим. Кроме того, ток, протекающий через транзистор VT1 (его можно изменять переменным резистором R3), создает падение напряжения на резисторе R2, которое также будет открывающим для тринистора. Когда сумма этих напряжений достигнет определенного значения, тринистор откроется, напряжение на нем уменьшится до 0,7...0,8 В. Зажжется светодиод HL1 и просигнализирует об аварии. В то же время напряжение на светодиоде HL2 уменьшится настолько, что он погаснет. Транзистор VT2 закроется, и нагрузка окажется отключенной от блока питания.