Устройство плавного пуска: назначение и принцип действия. Устройство плавного пуска электродвигателя

Устройство плавного пуска - электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами "номинал в номинал". Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска


При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Мощность

Главным параметром УПП является величина I ном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил... Тогда I ном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

    некоторая электротехника может самопроизвольно отключаться;

    возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Электрические двигатели получили широкое применение в любых сферах деятельности человека. Однако при запуске электродвигателя происходит семикратное потребление тока, вызывающее не только перегрузку сети питания, но и нагрев обмоток статора, а также выход из строя механических частей. Для устранения этого нежелательного эффекта радиолюбители советуют применять устройства плавного пуска электродвигателя.

Плавный пуск двигателя

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют активная и реактивная составляющие сопротивления (R). Значение реактивной составляющей зависит от частотных характеристик питания и во время запуска колеблется в пределах от 0 до расчетного значения (при работе инструмента). Кроме того, изменяется ток, называемый пусковым.

Ток пуска превышает в 7 раз значение номинального. При этом процессе происходит нагрев обмоток статорной катушки и, в том случае, если провод, из которого состоит обмотка, является старым, то возможно межвитковое КЗ (при уменьшении величины R ток достигает максимального значения). Перегрев влечет снижение срока эксплуатации инструмента. Для предотвращения этой проблемы существуют несколько вариантов использования устройств плавного пуска.

Переключением обмоток устройство плавного пуска двигателя (УПП) состоит из следующих основных узлов: 2 вида реле (управление временем включения и нагрузкой) , трех контакторов (рисунок 1).

Рисунок 1 - Общая схема устройства плавного пуска асинхронных двигателей (мягкого пуска).

На рисунке 1 изображен асинхронный двигатель. Его обмотки соединены по типу подключения «звезда». Запуск осуществляется при замкнутых контакторах K1 и K3. Через определенный временной интервал (задается при помощи реле времени) контактор К3 размыкает свой контакт (происходит отключение) и происходит включение контактом К2. Схема на рисунке 1 применима и для УПП двигателей различного типа.

Главным недостатком считается образование токов КЗ при одновременном включении 2-х автоматов. Эта проблема исправляется внедрением в схему вместо контакторов рубильника. Однако обмотки статора продолжают греться.

При электронном регулировании частоты пуска электромотора используется принцип частотного изменения питающего напряжения. Основным элементом этих преобразователей является преобразователь частоты, включающий в себя:

  1. Выпрямитель собирается на полупроводниковых мощных диодах (возможен вариант тиристорного исполнения). Он преобразует величину сетевого напряжения в пульсирующий постоянный ток.
  2. Промежуточная цепь сглаживает помехи и пульсации.
  3. Инвертор необходим для преобразования сигнала, полученного на выходе промежуточной цепи, в сигнал переменной амплитудной и частотной характеристиками.
  4. Электронная схема управления генерирует сигналы для всех узлов преобразователя.

Принцип действия, виды и выбор

Во время увеличения вращающего момента ротора и Iп в 7 раз для продления срока службы необходимо использовать УПП, которое отвечает следующим требованиям:

  1. Равномерное и плавное увеличение всех показателей.
  2. Управление электроторможением и пуском двигателя в определенные временные интервалы.
  3. Защита от скачков напряжения, пропадании какой-либо фазы (для 3-х фазного электродвигателя) и помех различного рода.
  4. Повышение износостойкости.

Принцип действия симисторного УПП: ограничение величины напряжения благодаря изменению угла открытия симисторных полупроводников (симисторов) при подключении к статорным катушкам электродвигателя (рисунок 2).

Рисунок 2 - Схема плавного пуска электродвигателя на симисторах.

Благодаря применению симисторов появляется возможность снизить пусковые токи в 2 и более раз, а наличие контактора позволяет избежать перегрева симисторов (на рисунке 2: Bypass). Основные недостатки симисторных УПП:

  1. Применение простых схем возможно только при небольших нагрузках или холостом запуске. В противном случае схема усложняется.
  2. Происходит перегрев обмоток и полупроводниковых приборов при продолжительном запуске.
  3. Двигатель иногда не запускается (приводит к значительному перегреву обмоток).
  4. При электротормозе электромотора возможен перегрев обмоток.

Широко применяются УПП с регуляторами, в которых отсутствует обратная связь (по 1 или 3 фазам). В моделях этого типа необходимо устанавливать время пуска электромотора и напряжение непосредственно перед началом пуска. Недостаток устройств - невозможность регулировать вращающий момент подвижных механических частей по нагрузке. Для устранения этой проблемы нужно применить устройство по снижению Iп, защиты от различной разности фаз (возникает во время перекоса фаз) и механических перегрузок.

Более дорогостоящие модели УПП включают в себя возможность слежения за параметрами работы электродвигателя в непрерывном режиме.

В устройствах, содержащих электромоторы, предусмотрены УПП на симисторах. Они отличаются схемой и способом регуляции сетевого напряжения. Простейшие схемы - схемы с однофазным регулированием. Они исполняются на одном симисторе и позволяют смягчить нагрузки на механическую часть, и применяются для электромоторов с мощностью менее 12 кВ. На предприятиях применяется 3-х фазное регулирование напряжения для электромоторов мощностью до 260 кВт. При выборе вида УПП необходимо руководствоваться следующими параметрами:

  1. Мощность устройства.
  2. Режим работы.
  3. Равенство Iп двигателя и УПП.
  4. Количество запусков за определенное время.

Для защиты насосов подходят УПП, защищающие от ударов с гидравлической составляющей трубы (Advanced Control). УПП для инструментов выбираются, исходя из нагрузок и больших оборотов. В дорогих моделях этот тип защиты в виде УПП присутствует, а для бюджетных необходимо изготавливать его своими руками. Применяется в химических лабораториях для плавного запуска вентилятора, охлаждающего жидкости.

Причины применения в болгарке

Благодаря особенностям конструкции при старте угловой шлифовальной машинки происходят высокие динамические нагрузки на детали инструмента. При начальном вращении диска, ось редуктора подвержена действию сил инерции:

  1. Инерционный рывок может вырвать болгарку из рук. Происходит угроза жизни и здоровью, так как этот инструмент очень опасен и требует строгого соблюдения техники безопасности.
  2. При запуске происходит перегрузка по току (Iпуска = 7*Iном). Происходит преждевременный износ щеток, перегрев обмоток.
  3. Изнашивается редуктор.
  4. Разрушение режущего диска.

Ненастроенный инструмент становится очень опасным, ведь существует вероятность причинения вреда здоровью и жизни. Поэтому необходимо его обезопасить. Для этого и собираются УПП для электроинструмента своими руками.

Создание своими руками

Для бюджетных моделей угловой шлифовальной машинки и другого инструмента необходимо собрать свое УПП. Сделать это несложно, ведь благодаря интернету, можно найти огромное количество схем. Наиболее простая и, в то же время, эффективная - универсальная схема УПП на симисторе и микросхеме.

При включении болгарки или другого инструмента происходит повреждение обмоток и редуктора инструмента, связанного с резким запуском. Радиолюбители нашли выход из этой ситуации и предложили простой плавный пуск для электроинструмента своими руками (схема 1), собранную в отдельном блоке (в корпусе очень мало места).

Схема 1 - Схема плавного пуска электроинструмента.

УПП своими руками реализуется на основе КР118ПМ1 (фазовое регулирование) и силовой части на симисторах. Основной изюминкой устройства является его универсальность, ведь его можно подключить к любому электроинструменту. Оно не только легко монтируется, но и не требует предварительной настройки. В основном подключение системы к инструменту не является сложным и устанавливается в разрыв кабеля питания.

Особенности работы модуля УПП

При включении болгарки на КР118ПМ1 подается напряжение и на управляющем конденсаторе (С2) происходит плавный рост напряжения по мере роста заряда. Тиристоры, находящиеся в микросхеме, открываются постепенно с определенной задержкой. Симистор открывается с паузой, равной задержке тиристоров. Для каждого последующего периода напряжения происходит постепенное уменьшение задержки и инструмент плавно запускается.

Зависит время набора оборотов от емкости С2 (при 47 мк время запуска равно 2 секунды). Эта задержка является оптимальной, хотя ее можно менять путем увеличения емкости С2. После выключения углошлифовальной машинки (УШМ) происходит разряд конденсатора С2 благодаря резистору R1 (время разрядки примерно равно 3 секунды при 68к).

Эту схему для регулировки оборотов электродвигателя можно модернизировать путем замены R1 на переменный резистор. При изменении величины сопротивления переменного резистора меняется мощность электромотора. Резистор R2 выполняет функцию контроля величины силы тока, который протекает через вход симистора VS1 (желательно предусмотреть охлаждение вентилятором), являющийся управляющим. Конденсаторы С1 и С3 служат для защиты и управлением микросхемы.

Симистор подбирается со следующими характеристиками: напряжение прямое максимальное до 400–500 В и минимальный ток пропускания через переходы должен быть не менее 25 А. При изготовлении УПП по этой схеме запас по мощности может колебаться от 2 кВт до 5 кВт.

Таким образом, для увеличения срока службы инструментов и двигателей, необходимо производить их плавный запуск. Это связано с конструктивной особенностью электромоторов асинхронного и коллекторного типов. При запуске происходит стремительное потребление тока, из-за которого происходит износ электрической и механической частей. Использование УПП позволяет обезопасить электроинструмент, благодаря соблюдению правил техники безопасности. При модернизации инструмента возможна покупка уже готовых моделей, а также сборка простого и надежного универсального устройства, которое не только отличается, но и даже превосходит некоторые заводские УПП.

Устройства плавного пуска (УПП)(Софтстартеры) представляет механизм, обеспечивающий плавный рост пусковых характеристик электродвигателей. Он смягчает процесс запуска и остановки работы .

Функции и возможности устройства плавного пуска

У двигателей, запустившихся в работу напрямую, характеристики значительно превышают номинальные значения. Повышенные значения пусковых токов и крутящего момента при пуске, являются источниками повреждений, это механические рывки, повреждения изоляции обмотки, перегрев, тяжелый старт и прочих проблем с электродвигателем. Но с помощью плавного пуска все нежелательные неисправности можно предупредить, поэтому электрические двигатели нуждаются в устройстве плавного пуска (УПП).

Главные функции УПП:

  • Плавный разгон и остановка.
  • Уменьшение пускового тока.
  • Согласование момента нагрузки с крутящим моментом двигателя.

В УПП напряжение на обмотках электродвигателя постепенно нарастает, обеспечивая ограничение тока. Благодаря этому, параметры электромашины при запуске сохраняются в неопасных пределах.

Устройство УПП

УПП выпускаются разных модификаций и могут отличаться принципом работы. Но все софтстартеры имеют одинаковые главные составляющие части.

Основные компоненты УПП:

  • Тиристоры . Эти элементы регулируют напряжение, которое подаётся на электродвигатель.
  • Блок печатных плат . Эта часть софтстартеров управляет тиристорами.
  • Радиаторы, вентиляторы . Эти приборы необходимы для рассеивания тепла.
  • Трансформатор тока . Благодаря этому компоненту, осуществляется измерение тока.
  • Корпус .

Некоторые устройства плавного пуска оснащены клавиатурой и дисплеем. Также в зависимости от типа софтстартера, прибор может быть оборудован встроенным реле перегрузки, из-за чего отпадает потребность во внешнем реле.

Принцип действия УПП

Регулировка пусковых характеристик осуществляется по двум принципам:

  1. Механическому.
  2. Электрическому.

Механические УПП:

Простой способ осуществить плавный запуск двигателя заключается в принудительном удерживании усиливающейся скорости вращения с помощью тормозных колодок, жидкостных муфт и других элементов.

Этот способ имеет существенные минусы:

  • Уменьшение напряжения снижает крутящий момент на валу.
  • Продолжительный старт мотора повышает риск перегрева двигателя.
  • Длительный запуск может привести к перегреву полупроводниковых компонентов УПП, после чего они могут выйти из строя.

Также механическое управление пуском осуществляется исключительно при небольших нагрузках либо запуске двигателя вхолостую.

Электрические УПП считаются более совершенными, их разделяют на два вида по специфике работы:

  1. Амплитудные . Софтстартеры этого типа обеспечивают старт мотора в холостом режиме либо с умеренной нагрузкой. Эти устройства постепенно повышают напряжение на клеммах электродвигателя до предельных показателей.
  2. Частотные (фазовые) . Эти УПП управляют частотными характеристиками фазного тока, не снижая напряжение. Благодаря этому, запустить мотор удается даже при большой нагрузке.

Фазовые УПП предоставляют следующие преимущества:

  • Возможность осуществлять размеренное прибавление вращательной частоты в рабочем режиме.
  • Гарантируют стабильность высокой мощности мотора даже при смене скорости вала.

Минусы фазовых УПП:

  • Сложность монтажа.
  • Сложная наладка.

Электрические приборы для плавного пускового процесса не имеют таких недостатков, которые могли бы привести к неполадке самого устройства или двигателя. Они всегда оправдывают себя при эксплуатации, но стоят гораздо дороже УПП с механическим управлением.

Виды УПП

УПП разделяют на следующие типы:

  • Регуляторы напряжения, в которых присутствует функция обратной связи . Это усовершенствованные модели УПП, контролирующие фазовый сдвиг между током в обмотках и напряжением.
  • Регуляторы напряжение, в которых отсутствует функция обратной связи . Приборы широко используются по сравнению с другими пускателями. Управление в них можно осуществлять по двум либо трем фазам исключительно по указанным ранее параметрам.
  • Регуляторы пускового момент а . Эти приборы могут координировать исключительно одну фазу электродвигателя. А это позволяет контролировать пусковой момент двигателя и совсем незначительно снижать пусковой ток. Можно сказать, эти регуляторы не контролируют ток, его уменьшение малозаметно, поэтому он практически такой, как при прямом запуске. Если такой ток будет протекать по обмоткам двигателя дольше, чем обычно при прямом пуске, то может возникнуть, перегрев электродвигателя. Поэтому этот тип УПП не используется для устройств, требующих снижение пусковых токов. Но их можно использовать для плавного запуска однофазных асинхронных электродвигателей.
  • Регуляторы тока с обратной связью . Это наиболее прогрессивные устройства для плавного пуска. Они осуществляют прямой контроль над током, что позволяет более точно управлять пуском. Преобладают простой настройкой, а также программированием пускателя. Большая часть параметров устанавливается автоматически.

Приборы, управляющие напряжением и не имеющие обратной связи, являются наиболее распространённым видом УПП. Они бывают двух- и трехфазными. Эти УПП могут контролировать напряжение в двух и сразу в трех фазах двигателя. Регулирование выполняется исключительно по ранее заданной программе, которая включает показатели исходного напряжения пуска и точное время, за которое напряжение должно дорасти до номинального значения. Некоторые модели этих пускателей способны ограничивать пусковой ток, но чаще всего это ограничение связано с уменьшением напряжения при пуске двигателя. Также они могут управлять процессом замедления, медленно снижая напряжение для остановки.

Электрические и механические характеристики этих устройств отвечают всем стандартным требованиям, предъявляемым к УПП. Но более совершенным вариантом этих софтстартеров являются регуляторы, имеющие обратную связь.

Регуляторы напряжения с обратной связью получают данные о токе двигателя и, пользуясь этой информацией, приостанавливают рост напряжения во время запуска. Снижать нарастание напряжения регуляторы начинают тогда, когда током будут достигнуты предельные значения, которые указываются заранее. Такие УПП позволяют осуществлять запуск с минимальным значением тока и удовлетворительным значением крутящего момента. А данные, которые они получают, применяются для организации защит от дисбаланса фаз, перегрузки и пр.

Применение УПП

УПП эксплуатируются во всех областях промышленности и сельского хозяйства. Их можно применять везде, где присутствует электродвигатель. Но выбирают устройства плавного пуска исходя из нагрузки двигателя, а также частоты запусков.

При небольших нагрузках и не частых запусках следует устанавливать регуляторы без обратной связи или регуляторы пускового момента. Эти УПП подходят для шлифовальных станков, некоторых типов вентиляторов, вакуумных насосов и пр. оборудования с низкими нагрузками.

При частых инерционных запусках и высокой нагрузке рекомендованы регуляторы с обратной связью. Их целесообразно применять в центрифуге, ленточной пиле, вертикальном конвейере, распылителе и т.п.

Достоинства и наличие недостатков

Применение устройства плавного пуска снижает вероятность перегрева двигателя. Таким образом, можно выделить главные плюсы использования УПП:

  • Повышают срок службы электродвигателей и других исполнительных устройств, контактирующих с электродвигателем.
  • Понижают расход энергии.
  • Снижают затраты на эксплуатацию машин.
  • Регулирует длительность разгона и торможения электрического двигателя.
  • Снижает силу электромагнитных помех.
  • Монтируется и эксплуатируется без особых трудностей.

Недостатки:

  • Не выполняют возврат направления вращения.
  • Не контролируют в установившемся режиме частоту вращений двигателя.
  • Уменьшить пусковой ток до меньших значений, требующихся в момент старта для вращения ротора.

Устройства плавного пуска электродвигателя, считаются распространёнными приборами, решающими проблемы прямого пуска.

Простота конструкции, низкая стоимость и высокая надёжность асинхронного электродвигателя с короткозамкнутым ротором* сделали его самым распространенным преобразователем электрической энергии в механическую.

Наряду с очевидными преимуществами, асинхронные электрические машины имеют ряд недостатков, самым существенным из которых является большой пусковой ток при прямом пуске (непосредственном подключении двигателя к питающей сети при помощи обычного пускателя).

Проявляется этот недостаток “проседанием” сети, когда при пуске электродвигателя отключаются автоматы, мерцают лампочки, и отключаются некоторые реле и контакторы, останавливается питающий генератор, иными словами, от сети требуется ток, который она обеспечить не может.

Причины высокого пускового тока кроются в физических принципах работы асинхронного двигателя, но это тема совсем другой статьи, отметим только, что кратность пускового тока может достигать 5…7 от номинального рабочего тока, что интересно, высокий пусковой ток отнюдь не значит высокий пусковой момент двигателя.

Еще одна характерная проблема прямого пуска двигателя - это пуск “рывком”, приводит на первый взгляд к незаметным последствиям - гидравлическим ударам, рывкам в механизме, проскальзыванию ремней, быстрому износу подшипников, буксованию колес подвижных тележек, большому износу и трению в редукторах.


Устройство плавного пуска или преобразователь частоты

Иногда путают два класса разных устройств, имеющих в своем активе схожий функционал.

  • Устройства плавного пуска призваны снижать пусковые токи электродвигателей и пиковые потребляемые мощности в электрических сетях, преобразуют напряжение, подводимое к обмоткам электродвигателя при помощи специальных силовых ключей - симисторов (или встречно - параллельно включенных тиристоров).
  • В то время как преобразователи частоты (ПЧ) преобразуют частоту и напряжение, подводимое к обмоткам электродвигателя, конечная цель этого преобразования плавная регулировка скорости вращения выходного вала двигателя.

Да, частотный преобразователь имеет опцию плавного пуска электродвигателя, но значительно более сложное устройство. В общих чертах преобразователь частоты состоит из диодного силового выпрямителя, LC-фильтра, инвертора на дорогостоящих IGBT модулях, системы управления ШИМ, системы автоматического регулирования, и имеет значительный математический вычислительный аппарат.

Так почему не стоит путать УПП и ПЧ? Хотя бы потому, что стоимость последнего минимум в 2-3 раза больше, а с ростом мощности устройства разница в стоимости возрастает. Например, преобразователь частоты INSTART мощностью 37кВт в 4 раза дороже устройства плавного пуска аналогичной мощности, ответ напрашивается сам: если цели регулирования скорости выходного вала двигателя не стоит, а обеспечить мягкий пуск и сохранность механизмов требуется, то зачем переплачивать.


Сводная таблица характеристик УПП, поставляемых компанией ООО «РусАвтоматизация»

Диапазон мощностей Пусковое напряжение от Uн
(ограничение пускового
тока от Iн)
Время пуска /
Время останова
Режим пуска Режимы останова
INSTART SSI 5,5…600 кВт 30…70%
(50…500%)
2…60 с /
0…60 с
Ограничение I; Рампа по U;
Запуск рывком в режиме ограничения I;
Запуск рывком в режиме рампы по U;
Рампа по I; Режим двойного контура
регулирования с ограничением I/U
Свободный выбег;
Плавный останов
AuCom CSX 7,5…110 кВт 30…70%
(нет)
2…20 с /
2…20 с
Рампа по U Свободный выбег;
Плавный останов
AuCom CSX-i 7,5…110 кВт нет
(250…450%)
2…20 с /
2…20 с
Ограничение I; Рампа по I Свободный выбег;
Плавный останов
AuCom EMX3 20…615А нет
(100…600%)
1…180 с /
0…240 с
Ограничение I; Рампа по I;
Адаптивный пуск; Запуск рывком
Свободный выбег;
Плавный останов;
Адаптивное торможение;
Торможение постоянным током
AuCom EMX4 20…579А нет
(100…600%)
1…180 с /
0…240 с
Ограничение I; Рампа по I;
Адаптивный пуск
Свободный выбег;
Плавный останов;
Адаптивное торможение
ONI SFA 5,5…45кВт 40…70%
(нет)
1…20 с /
1…20 с
Рампа напряжения Плавный останов


Выбрать УПП наугад или не переплачивать?

Для эффективного применения устройства плавного пуска важно осуществить правильный выбор устройства по номиналу мощности, не забыв про характеристику нагрузки , различные задачи требуют различных пусковых характеристик и в общих чертах могут быть разделены на три категории:

  1. Нормальный режим работы требует значения пускового тока не более 3,5хIн, при этом время пуска может быть в диапазоне 10…20 с;
  2. Тяжелый режим работы характеризуется наличием момента сопротивления на валу двигателя и требует значения пускового тока до 4,5хIн и время разгона до 30 с;
  3. Очень тяжелый режим работы характеризуется пусковым током до 5,5хIн и длительным временем разгона.

Устройства плавного пуска серии SSI INSTART - по настоящему универсальная рабочая лошадка, имеет 6 режимов пуска двигателя, позволяет ограничить пусковой ток до 500% от номинального и временем плавного пуска до 60 секунд. INSTART SSI отлично подойдет для категории механизмов с тяжелым пуском дробилки (компрессоры, нагруженные конвейеры).

Кроме того, полноценная трехфазная схема регулирования, встроенные функции защиты нагрузки и коммуникационный интерфейс MODBUS RTU.

Устройства плавного пуска CSX, CSX-i предназначены для регулирования процессов пуска, разгона, торможения трехфазных асинхронных двигателей мощностью до 110 кВт. Модели отличаются функционалом. Первая оснащена функциями контроля напряжения по заданному времени (рампа напряжения), вторая дополнительно имеет встроенные функции защиты нагрузки и контролирует токовые нагрузки (рампа тока, ограничение тока). Коммуникационные интерфейсы доступны опционально.

CSX, CSX-i подходят для категорий механизмов с легким и нормальным режимом пуска (ненагруженный ленточный конвейер, центробежные насосы и вентиляторы).

Из плюсов, серии УПП CSX, CSX-i не требуют применения внешнего контактора, обе модели имеют встроенный шунтирующий контактор.

Устройства плавного пуска EMX3 , EMX4 как два брата близнеца мало чем отличаются друг от друга, можно лишь сказать, что EMX4 новая модель, разработанная на основе EMX3, имеет еще более компактный корпус, обладает новыми функциями управления и защиты, а также дополнена новой конструктивной особенностью - использованием встраиваемых плат расширения.

Оба устройства имеют фантастические показатели ограничения пускового тока до 600% от номинального и время разгона до 180 секунд. Устройства с такими характеристиками целесообразно применять для категорий механизмов с очень тяжелым режимом пуска, таким как молотковая или шаровая мельница.

ONI SFA компактное и лаконичное УПП включает модельный ряд до 45кВт. Панель управления поражает своей простотой, всего 3 регулятора не заставят вас долго разбираться в настройках. ONI SFA идеально подойдет для легких нагрузок, таких как центробежные насосы, различные миксеры, сверлильные и токарные станки. Имеет встроенный шунтирующий контактор.

Данная статья носит исключительно ознакомительный характер. Обратитесь к специалистам компании ООО «РусАвтоматизация» для подбора устройства плавного пуска применительно к вашей категории производственного оборудования.

Техотдел компании РусАвтоматизация
Дата публикации статьи: 2018-10-22

Soft Starter Toshiba TMC7 – пример мягкого пускателя

При словах “мягкий пускатель” у человека, далёкого от электроники, возникает ассоциация – что-то мягкое, набитое поролоном или ватой.

Но давайте серьезно рассмотрим это замечательное устройство, выясним, что у него внутри и с какой стороны к нему подходить.

Мягкий пускатель – что это такое?

Понятие “мягкий” относится не к самому пускателю, а к пуску двигателя, который подключается через такой пускатель.

Имеется ввиду, как правило, асинхронный электрический двигатель с короткозамкнутым ротором. Это самый распространенный тип двигателей. По моим наблюдениям, в 95% случаев в промышленном оборудовании применяются именно асинхронные двигатели.

Выбор

При выборе мягкого пускателя вполне логично руководствоваться прежде всего мощностью подключаемого электромотора.

Однако, если мотор имеет тяжелые условия пуска, а также при частом включении/выключении, необходим запас по мощности.

Дело в том, что мягкий пускатель устроен так, что не может долго тянуть двигатель на напряжении ниже номинального. Поскольку для этого применяются тиристоры, а они греются. И им нужно время, чтобы остыть и подготовиться “морально” для очередного пуска или останова. Во время нормальной работы, когда двигатель работает на номинале, тиристоры полностью открыты, напряжение на них стремится к нулю, и они практически не греются.

В мощных софтстартерах, чтобы не напрягать тиристоры после выхода двигателя на номинал, используют шунтирующий контактор (байпас), который может быть как встроенным, так и внешним.

Основные параметры

1. Время разгона (передняя рампа) . Название говорит за себя. Чем меньше время разгона, тем труднее двигателю, и тем меньше смысла использовать мягкий пускатель. Обычное время разгона – 10…20 сек. Чем больше это время, тем труднее мягкому пускателю – тиристоры не могут работать в таком режиме длительное время, греются. Другое название параметра – наклон характеристики разгона.

2. Время торможения (замедления), задняя рампа . То же самое, но напряжение плавно понижается. Другое название – наклон характеристики торможения.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

3. Начальное напряжение. Если это значение выставить малым, то двигатель будет плавно набирать обороты. Если очень малым – может вообще не тронуться. Оптимально – выставить такой минимальный уровень, при котором мотор гарантированно начнет вращаться при включении.

4. Ограничения тока. Тут принцип такой же, как и у теплового реле, которое . Только реле не может долго терпеть, и отключает цепь пуска, а софт стартер ограничивает ток двигателя на установленном уровне. Например, при разгоне ток некоторое время может составлять 120-140% от номинала, это нормально. Ток будет сохраняться на уровне ограничения, затем напряжение продолжит увеличиваться до номинала.

5. Номинальный ток. Этот параметр используется для защиты двигателя в процессе работы, и аналогичен работе теплового реле – отключает двигатель, если ток превысил уставку.

Схема включения

Схемы включения софт стартеров могут отличаться для разных моделей, но смысл один.

Выделю основные тезисы.

1. Три фазы на входе, три фазы – на выходе.

2. Система управления пуском/стопом – двухпроводная (переключатель) либо трехпроводная (две кнопки, Пуск и Стоп):

3. Внутреннее реле аварии, которое говорит о ошибке (например, перегрев или перегрузка) и размыкает соответствующую .

Схема включения мягкого пускателя

Подробнее про схемы включения и пример реального применения мягких пускателей – .

Настройка параметров

Рассмотрим подробно для примера переднюю панель Софтстартера Toshiba TMC7, внешний вид которого показан в самом начале этой статьи.

Мягкий пускатель (SoftStarter) Toshiba TMC7 – передняя панель

Reset – сброс ошибок.

Trip codes – коды ошибок, которые индицируются в определенном количестве миганий светодиода Ready.

Вот количество миганий и соответствующая ошибка:

  1. Проблема с силовой частью
  2. Превышено время старта
  3. Перегрузка двигателя
  4. Перегрев двигателя
  5. Дисбаланс по фазам
  6. Частота на входе вышла за пределы 40…72 Гц
  7. Ошибка чередования фаз
  8. Ошибка связи (в случае применения дополнительного модуля)

Current Ramp – Нарастание тока при запуске, в процентах и в секундах.

Motor FLC – ток двигателя, в процентах от номинала мягкого пускателя. Параметр защиты двигателя.

Current limit – ограничение тока во время старта

Soft Stop – время мягкого останова. 0 – выбег двигателя (отключение питания, вращение по инерции)

Motor Trip Class – Класс термозащиты двигателя. Чем выше значение, тем медленнее сработает тепловая защита двигателя при перегрузке

AUX relay, Phase rotatoin – функция внутреннего реле, защита от смены фаз от неправильного вращения

Excess Start Time – Превышение времени старта. Двигатель за данное время не смог развить номинальную скорость. Требуется увеличить уровень ограничения тока.

По контактам управления.

С1, С2 – клеммы подключения термистора двигателя. Если термистора нет, устанавливается перемычка.

R33…R44 – выходы функциональных реле

02, 01 – подключение кнопок управления

А2, А1, А3 – выходы для питания цепей управления и контрольных цепей схемы софт стартера.

Защита

Поскольку Soft Starter – это электронное силовое устройство, то для его защиты по входу требуются быстродействующие предохранители. На крайний случай – быстродействующие защитные автоматы с характеристикой В. Я об этом много распространяюсь в статье про твердотельные реле, .

С другой стороны (по выходу Мягкого пускателя) надо защитить пускатель и двигатель от длительного перегруза. Это определяется классом срабатывания защиты . Класс срабатывания защиты определяет время пуска при заданном токе двигателя до того, как сработает защита. Существует несколько классов защиты – 10, 20, 30. Чем больше класс, тем большая инерция у системы защиты.