Устройство ограничения напряжения холостого хода сварочного трансформатора. Холостой ход трансформатора - что это? Потребляемая мощность инверторов

Современное оборудование для электросварки предлагает множество современных решений для продуктивной и производительной роботы, в том числе новое поколение аппаратов для сварки – инверторы. Что это такое и как устроен сварочный инвертор?

Инвертор современного типа представляет собой сравнительно небольшой агрегат в пластиковом корпусе общим весом 5-10 кг (в зависимости от вида и типа модели). Большинство моделей имеют прочную текстильную ленту, позволяющую сварщику удерживать агрегат на себе в процессе работы и носить его с собой при перемещении по объекту. На фронтальной части корпуса находится плата управления сварочного инвертора – регуляторы напряжения и других параметров, делающие возможной гибкую настройку мощности во время работы.

Современные аппараты для сварки классифицируются на бытовые, полупрофессиональные и профессиональные, которые отличаются потребляемой мощностью, диапазоном настроек, производительностью работы и другими характеристиками. На рынке популярностью у покупателей пользуются модели российских и зарубежных производителей. В рейтинг наиболее востребованных входят КЕДР ММА-160, Ресанта САИ-160, ASEA-160D, ТОРУС-165, FUBAG IN 163, Rivcen Arc 160 и другие модели.

Как работает сварочный инвертор

Инвертор отличается другим принципом действия и эксплуатационными характеристиками в сравнении с трансформаторными источниками питания. Такое устройство и принцип действия сварочного инверторного аппарата позволяет использовать трансформаторы меньших размеров, нежели сетевые трансформаторы. Современные инверторы для сварки оснащены панелью управления, позволяющей контролировать процессы преобразования тока.

Детально принцип работы сварочного инвертора можно описать по этапам преобразования энергии тока:


Предлагаем посмотреть видео, и закрепить знания по устройству и принципу работы сварочного инвертора

Основные параметры сварочных инверторов

Потребляемая мощность инверторов

Важным показателем работы вида оборудования является потребляемая мощность сварочного инвертора. Она зависит от категории оборудования. Например, бытовые инверторы предназначены для работы от однофазной сети переменного тока 220 В. Полупрофессиональные и профессиональные аппараты обычно потребляют энергию от трехфазной сети переменного тока до 380 В. Следует помнить, что в бытовой электросети максимальная нагрузка тока не должна превышать 160 А, и вся фурнитура, включая силовые автоматы, штепсели и розетки не рассчитаны на показатели выше этой цифры. При подключении аппарата более высокой мощности может вызвать срабатывание автоматов защиты, выгорание выходных контактов на вилке или выгорание электрической проводки.

Напряжение холостого хода инверторного аппарата

Напряжение холостого хода сварочного инвертора – второй важный показатель работы устройства данного типа. Напряжение холостого хода – это напряжение между положительными и отрицательными выходными контактами при отсутствии дуги, которое возникает в процессе преобразования тока питающей сети на двух последовательных преобразователях. Стандартный показатель холостого хода должен находиться в пределах 40-90В, что является залогом безопасности работы и обеспечивает легкое зажигание дуги инвертора.

Продолжительность включения сварочного инвертора

Другим важным классифицирующим показателем работы аппаратов для инверторной сварки является его продолжительность включения (ПВ), то есть максимальное время непрерывной работы прибора. Дело в том, что при продолжительной работе под высоким напряжением, а также в зависимости от температуры окружающей среды, агрегат может перегреваться и выключаться через разный промежуток времени. Продолжительность включения обозначается производителями в процентах. Например, 30% продолжительность включения означает способность оборудования работать непрерывно на максимальном токе 3 минуты из 10. Уменьшение частоты тока позволяет продлить продолжительность включения. Разные производители указывают разную ПВ, в зависимости от принятых стандартов работы с аппаратом.

В чем отличия от сварочных аппаратов предыдущих поколений

Раньше для сварки использовались различные виды агрегатов, с помощью которого получали выходной ток нужной частоты для возбуждения дуги. Различного вида трансформаторы, генераторы и другое оборудование имели ограничения в эксплуатации, в большей мере из-за своих больших внешних характеристик. Большинство аппаратов предыдущего поколения работали только вместе с громоздкими трансформаторами, которые преобразовывали сетевой переменный ток в высокие токи на вторичной обмотке, делая возможным возбуждение сварочной дуги. Главным недостатком трансформаторов были их большие габариты и вес. Принцип действия инвертора (увеличение выходной частоты тока) позволил уменьшить размеры установки, а также получить большую гибкость в настройках работы аппарата.

Достоинства и основные характеристики инверторных аппаратов

К достоинствам, делающих инверторный источник сварочного тока наиболее популярным видом сварочных аппаратов, можно причислить:

  • высокий КПД – до 95% при сравнительно низком потреблении электричества;
  • высокая продолжительность включения – до 80%;
  • защита от перепадов напряжения;
  • дополнительное увеличение мощности при разрыве дуги (т.н. форсаж дуги);
  • небольшие габариты, компактность, позволяющая удобно переносить и хранить агрегат;
  • сравнительно высокий уровень безопасности работы, хорошая электроизоляция;
  • лучший результат сварки – аккуратный качественный шов;
  • возможность работы с трудносовместимыми металлами и сплавами;
  • возможность использования любых типов электродов;
  • возможность регулирования основных параметров при работе инвертора.

Главные недостатки:

  • более высокая цена в сравнении с другими типами сварочных аппаратов;
  • дорогостоящий ремонт.

Отдельно следует упомянуть о еще одной особенности данной разновидности сварочных аппаратов. Инверторный аппарат является очень чувствительным к влаге, пыли и другим мелким частицам. При попадании внутрь пыли, особенно металлической, прибор может выйти из строя. То же самое касается влаги. Хотя производители оснащают современные инверторы защитой от попадания влаги и пыли, следовать правилам и мерам предосторожности при работе с ними все же стоит: не работать с прибором во влажной среде, возле работающей «болгарки» и т.д.

Низкие температуры – еще один «пунктик» всех инверторов. На морозе прибор может не включиться из-за сработавшего датчика перегрузки. При низких температурах также может образоваться конденсат, что может повредить внутренние электросхемы и вывести аппарат из строя. Поэтому, при регулярной эксплуатации инвертора необходимо регулярно «продувать» его от пыли, защищать от влаги и не работать при низких температурах.

Что такое напряжение холостого хода сварочного инвертора и что от него зависит?

Ответ:

Среди характеристик сварочных инверторов есть несколько важных показателей. Это напряжение питающей электросети (220 или 380 Вольт), диапазон выдаваемого тока (от 10 до 600 Ампер), имеющиеся функции, вес и габариты аппарата, а также напряжение холостого хода.

Эта характеристика показывает нам, с каким напряжением ток выходит на электрод после того, как пройдет все стадии преобразования после электросети. Напомним, что из электросети по питающему кабелю ток поступает на первый преобразователь, оттуда он выходит уже постоянным и идет на фильтр, а затем на второй преобразователь. В итоге мы снова получаем переменный ток с частотой не 50 Гц, а 20-50 кГц. Затем следует понижение входного напряжения с одновременным повышением силы тока. В итоге мы получаем выходное напряжение 55-90 Вольт и силу, которую можно регулировать в заданном для каждой конкретной модели диапазоне.

Вот это выходное напряжение и является напряжением холостого хода. От него зависит два момента:
. Безопасность инструмента для владельца;
. Легкость поджигания сварочной дуги.

Чем выше будет напряжение холостого хода, тем легче будет зажечь сварочную дугу инвертора. Казалось бы, стоит тогда покупать инверторные аппараты с высоким показателем напряжения холостого хода. Но высокое напряжение достаточно опасно для человека в случае соприкосновения, поэтому его далеко не всегда делают высоким. Если же вы все-таки хотите, чтобы зажигать дугу было легко, то стоит выбрать сварочный инвертор с высоким напряжением, но с дополнительно установленной функцией защиты, которая автоматически снижает напряжение до безопасного для человека уровня в том случае, если существует риск для пользователя, а затем возвращает уровень назад.

Если Вы ещё не выбрали сварочный инвертор, то среди бытовых моделей обратите внимание на и , из полупрофессиональных моделей можно порекомендовать и

Сварочный трансформатор представляет собой оборудование, применяемое для дуговой ручной и прочих видов сварки. В зависимости от модели, технических характеристик существуют бытовые и промышленные разновидности. Сварочный выпрямитель или трансформатор преобразует электричество сети до требуемого значения. В состав аппарата входит несколько основных узлов. Их совместное действие образует электрическую дугу. Она плавит металл, соединяя детали сварным швом.

Конструкция

Устройство сварочного трансформатора достаточно простое. У многих мастеров получается собрать аппарат самостоятельно. Трансформатор с простейшей конструкцией для сварочного аппарата работает при подключении к однофазной сети. Он имеет три основных элемента:

  • магнитопривод (сердечник);
  • первичную стационарную обмотку;
  • вторичную движущуюся обмотку.

Магнитоприводом выступает элемент из ферромагнитной стали с замкнутым контуром. Первичная обмотка подключается к сети, а вторичная – на массу и держатель электрода. Сопротивление контура понижается, их электромагнитная связь повышается.

Более совершенные конструкции имеют в своем составе дроссель и прочие дополнительные элементы.

Принцип работы

Принцип работы сварочного трансформатора заключается в постепенном понижении напряжения до уровня 60-80В и одновременном повышении силы тока до 40-500 А. Прибор при эксплуатации чаще всего поддерживает переменный ток. Однако есть и другие разновидности, выдающие постоянный электрический поток. Их называют выпрямителями.

Работа оборудования происходит по единому принципу. При подключении напряжения по первичному контуру проходит переменный ток. Он создает магнитный поток. В обеих обмотках индуцируется электродвижущая сила. Ее можно соотнести с количеством витков обмотки.

Например, первая обмотка имеет 100 витков, а вторая – 5. Коэффициент трансформации в этом случае равен 100:5 = 20. Если это оборудование подключить к бытовой сети, на выходе получится напряжение 220:20 = 11В.

Чтобы поменять нагрузку, сварщики меняют зазор магнитопривода. При его увеличении сила тока уменьшается. И, наоборот. Чтобы подобрать необходимое значение напряжения для сварки, определяется требуемое количество витков вторичной обмотки.

Составные элементы

Устройство сварочного трансформатора позволяет понизить напряжение и увеличить силу тока для проведения процесса плавления металла. Определение этих показателей производится при создании и настройке аппарата. Для осуществления оборудованием установленных функций, сварочные трансформаторы включают в себя определенный набор комплектующих. Помимо магнитопривода и двух обмоток в состав конструкции входят:

  • винт вертикальный с лентовидным типом резьбы;
  • рукоятка для его вращения;
  • ходовая гайка винта;
  • система подвеса (защищает от повреждений);
  • зажимы для крепления и вывода проводов;
  • корпус с вентиляционной решеткой.

В некоторых сварочных трансформаторах с переменным значением тока могут применяться дополнительные элементы, облегчающие работу мастера.

Дополнительные узлы

Сварочные трехфазные и однофазные трансформаторы и выпрямители могут иметь несколько дополнительных узлов. Они позволяют усовершенствовать работу прибора. Такими узлами могут быть:

  • конденсаторы;
  • дополнительные вторичные обмотки;
  • импульсные стабилизаторы;
  • тиристорные фазорегуляторы.

Агрегат бывает с подвижным шунтом. Расстояние между обмотками меняется не за счет движения вторичной обмотки, а при помощи дополнительной детали. Шунт будет менять расстояние зазора. Также наличие особой секционной обмотки, устроенной по другому принципу, способствует регулировке напряжения.

Промышленный или бытовой сварочный трансформатор иногда нуждается в дополнительном сопротивлении. Мастеру предоставляется возможность продолжить регулировку. Дополнительные возможности появляются без процесса разведения обмоток. Мастер при помощи такого прибора сможет сварить очень тонкие или толстые листы металла.

Сопротивление может быть выполнено в виде отдельного корпуса. В нем установлен набор контакторов. Эти элементы задают требуемое значение сопротивления.

Разновидности

Устройство и принцип действия промышленного или бытового сварочного трансформатора определяют его технические характеристики. Существуют разные принципы классификации аппаратуры. По назначению выделяют однопостные и многопостные устройства. В первом случае прибор предназначен для бытового применения. Он установлен в инверторах мощностью 3-10 кВт. Бытовая сеть не рассчитана на применение аппарата мощностью более 10 кВт.

Многопостные приборы имеют сложную конструкцию. Их применяют в профессиональных, промышленных аппаратах с мощностью от 10 кВт и выше. Такой прибор может обслуживать одновременно несколько рабочих мест.

По фазному признаку различают трехфазный и однофазный сварочный трансформатор. Бывают приборы, способные переключаться на разное напряжение сети. Для бытового применения подходят однофазные агрегаты (220 В), а для промышленного требуется трехфазное оборудование (380 В). Этот признак определяет нагрузку на выходе. Трехфазным прибором можно сварить толстые детали. Однофазным моделям это не под силу.

Типы конструкции

Классификация сварочных трансформаторов происходит также по принципу устройства конструкции. Выделяют три основные группы:

  1. Аппаратура с номинальным магнитным рассеиванием. Она имеет дроссель для регулировки выходного напряжения.
  2. Оборудование с увеличенным показателем магнитного рассеивания. Имеет сложную конструкцию. Она включает в себя несколько подвижных обмоток, импульсный стабилизатор и конденсатор. Также могут присутствовать другие компоненты.
  3. Тиристорные типы сварочных трансформаторов. Они имеют соответствующее устройство фазорегулятора. Приборы тиристорного типа характеризуются относительно малым весом.

Представленную классификацию имеют аппараты переменного тока. Существуют модели постоянного тока. Они имеют большие габариты, более сложное устройство. В их составе есть выпрямитель.

Такие модели стабильнее, удобнее в работе. Назначение сварочного трансформатора, который функционирует при постоянном токе, в этом случае определяется как промышленное. Оборудование позволяет мастеру работать с цветными металлами и нержавейкой. Стоимость подобных приборов достаточно высокая. Поэтому сварочные трансформаторы этого типа применяются исключительно в профессиональных целях. Для бытовых нужд вполне подходят устройства переменного тока.

Холостой ход

Сварочные трансформаторы функционируют в режиме нагрузки и на холостом ходу. В процессе создания шва, между электродом и заготовкой замыкается вторичная обмотка. Электричество плавит металл, соединяя две части детали в единую конструкцию. Когда шов создан, вторичная цепь размыкается. Сварка окончена, агрегат переходит в режим холостого хода.

Электродвижущие силы (ЭДС) сначала образуются из-за созданного магнитного поля. Далее они поддерживаются путем рассеивания. Они ответвляются от главного потока в магнитоприводе.

ЭДС замыкаются между витками катушки в воздушном пространстве. Они и образуют показатели холостого напряжения. Он считается безопасным для жизни мастера. Холостой ход ограничивается показателем 48 В. В некоторых моделях это значение увеличено до 70 В. Если показатели холостого хода превышают установленное значение, необходимо применять автоматическое ограничение. Оно срабатывает сразу после прекращения сварки. Также корпус агрегата должен иметь заземление. Это способствует увеличению безопасности работы мастера.

На что обращать внимание при выборе?

Выбирая сварочные трансформаторы, следует обратить внимание на главные технические характеристики. К ним относят следующее:

  • Напряжение сети. Показатель должен соответствовать указанному производителем значению (220 или 380 В).
  • Диапазон регулирования. Чем шире пределы, тем больше возможностей предоставляется сварщику. Можно выбрать электроды разного диаметра. Бытовые разновидности характеризуются диапазоном регулирования от 50 до 200 А.
  • Номинальный ток. Профессиональные устройства выдают около 1000 А, а бытовые – до 100 А.
  • Рабочее напряжение. На выходе из устройства для дуговой сварки должно определяться номинальное значение 30-70В.
  • Продолжительность сварки. Показатель определяет, сколько агрегат сможет работать непрерывно. Бытовые модели выполняют непрерывную сварку около 15-20 мин., а профессиональные – несколько часов.
  • Напряжение на холостом ходу. Показатель не должен превышать границы 70 В.
  • Потребляемая мощность. Чем выше этот показатель, тем эффективнее работает оборудование. Однако надо учитывать возможности бытовой сети. Слишком большая нагрузка может быть недопустимой.

При выборе необходимо учитывать, для каких целей приобретается оборудование. В этом случае получится купить агрегат с оптимальными показателями по приемлемой цене.

Возможные неисправности

Сварочные трансформаторы могут выходить из строя по нескольким причинам. В большинстве случаев ремонт можно произвести самостоятельно. Для этого необходимо определить причину поломки.

Чаще всего аппарат для сварки выходит из строя при замыкании в цепи. Оно происходит между элементами конструкции. Замыкание вызывает отключение аппарата. Чтобы возобновить работу агрегата, необходимо его разобрать. Неисправный элемент потребуется заменить. Чаще всего причиной такой поломки становится клеммная колодка или проходящая рядом с ней обмотка.

Второй причиной выхода аппарата из строя является перегрев. Он происходит, если устанавливается значение напряжения больше, чем рекомендовано производителем. Если подобная проблема появляется часто, перемотку потребуется частично или полностью заменить. Для этого приобретается провод с таким же диаметром сечения.

Если в процессе работы появился сильный шум, гудение, потребуется разобрать корпус. Причиной является ослабление зажима гайки или болта. Все соединения потребуется подтянуть.

После проведения ремонта работу оборудования тестируют. Если все в порядке, можно приступать к сварке снова. Конструкция агрегата отличается простотой и надежностью. Поэтому поломки и сбои в его работе появляются редко.

Оборудование для сварки широко применяется как любителями, так и профессионалами. При помощи такого устройства можно соединять тонкие и толстые заготовки, листы из различных материалов посредством электрической дуги. В зависимости от назначения и условий применения аппаратуры, следует приобретать прибор с требуемыми техническими характеристиками.

Расчет самодельных сварочных трансформаторов имеет выраженную специфику, так как в большинстве случаев они не соответствуют типовым схемам и для них, по большому счету, нельзя применить стандартные методики расчета, разработанные для промышленных трансформаторов. Специфика состоит в том, что при изготовлении самоделок параметры их компонентов подстраиваются под уже имеющиеся в наличии материалы - в основном под магнитопровод. Часто трансформаторы собираются не из самого лучшего трансформаторного железа, мотаются не самым подходящим проводом, усиленно греются и вибрируют.

При изготовлении трансформатора, близкого по конструкции промышленным образцам, можно пользоваться стандартными методиками расчета. Такие методики устанавливают наиболее оптимальные значения обмоточных и геометрических параметров трансформатора. Однако, с другой стороны, эта же оптимальность является недостатком стандартных методик. Так как они оказываются совершенно бессильными при выходе какого-либо параметра за рамки стандартных значений.

По форме сердечника различают трансформаторы броневого и стержневого типов.

Трансформаторы стержневого типа, по сравнению с трансформаторами броневого типа, имеют более высокий КПД и допускают большие плотности токов в обмотках. Поэтому сварочные трансформаторы обычно, за редким исключением, бывают стержневого тика.

По характеру устройства обмоток различают трансформаторы с цилиндрическими и дисковыми обмотками.


Типы обмоток трансформаторов: а - цилиндрическая обмотка, б - дисковая обмотка. 1 - первичная обмотка, 2 - вторичная обмотка.

В трансформаторах с цилиндрическими обмотками одна обмотка намотана поверх другой. Так как обмотки находятся на минимальном расстоянии друг от друга, то практически весь магнитный поток первичной обмоткой сцепляется с витками вторичной обмотки. Только некоторая часть магнитного потока первичной обмотки, называемым потоком рассеяния, протекает в зазоре между обмотками и поэтому не связана со вторичной обмоткой. Такой трансформатор имеет жёсткую характеристику (про вольт-амперную характеристику сварочного аппарата читайте ). Трансформатор с такой характеристикой не годится для ручной сварки. Для получения падающей внешней характеристики сварочного аппарата, в этом случае, используют или балластный реостат или дроссель. Наличие этих элементов усложняет устройство сварочного аппарата.

В трансформаторах с дисковыми обмотками первичная и вторичная обмотки отдалены друг от друга. Поэтому значительная часть магнитного потока первичной обмотки не связана со вторичной обмоткой. Ещё говорят, что эти трансформаторы имеют развитое электромагнитное рассеяние. Такой трансформатор имеет, необходимую, падающую внешнюю характеристику. Индуктивность рассеяния трансформатора зависит от взаимного расположения обмоток, от их конфигурации, от материала магнитопровода и даже от близко расположенных к трансформатору металлических предметов. Поэтому точный расчёт индуктивности рассеяния практически невозможен. Обычно, на практике, расчёт ведётся методом последовательных приближений с последующим уточнением обмоточных и конструктивных данных на практическом образце.

Регулировка сварочного тока, обычно, достигается изменением расстояния между обмотками, которые выполняются подвижными. В бытовых условиях трудно выполнить трансформатор с подвижными обмотками. Выход может быть в изготовлении трансформатора на несколько фиксированных значений сварочного тока (на несколько значений напряжения холостого хода). Более тонкая регулировка сварочного тока, в сторону уменьшения, может осуществляется укладыванием сварочного кабеля в кольца (кабель будет сильно нагреваться).

Особенно сильным рассеиванием и, следовательно, крутопадающей характеристикой отличаются трансформаторы П-образной конфигурации у которых обмотки разнесены на разные плечи, так как расстояние между обмотками у них особенно велико.

Но они теряют много мощности и могут не дать ожидаемый ток.

Отношения числа витков первичной обмотки N 1 к числу витков вторичной обмотки N 2 называется коэффициентом трансформации трансформатора n, и если не учитывать различные потери, то справедливо выражение:

n = N 1 /N 2 = U 1 /U 2 = I 2 /I 1

где U 1 , U 2 - напряжение первичной и вторичной обмоток, В; I 1 , I 2 - ток первичной и вторичной обмоток, А.

Выбор мощности сварочного трансформатора

Прежде чем приступить к расчету сварочного трансформатора, необходимо четко определиться - на какой величине сварочного тока его предстоит эксплуатировать. Для электросварки в бытовых целях чаще всего используются покрытые электроды диаметром 2, 3 и 4 мм. Из них наибольшее распространение получили, наверное, трехмиллиметровые электроды, как наиболее универсальное решение, подходящие для сваривания как относительно тонкой стали, так и для металла значительной толщины. Для сварки двухмиллиметровыми электродами выбирается ток порядка 70А; "тройка" чаще всего работает на токе 110-120А; для "четверки" потребуется ток 140-150А.

Приступая к сборке трансформатора, разумным будет установить для себя предел выходного тока, и мотать обмотки под выбранную мощность. Хотя здесь можно ориентироваться и на максимально возможную мощность для конкретного образца, учитывая, что от однофазной сети любой трансформатор вряд ли способен развить ток выше 200А. При этом необходимо четко осознавать, что с увеличением мощности растет степень нагрева и износа трансформатора, необходимы более толстые и дорогие провода, увеличивается вес, да и не каждая электросеть может выдержать аппетиты мощных сварочных аппаратов. Золотой серединой здесь может быть мощность трансформатора, достаточная для работы наиболее ходовым трехмиллиметровым электродом, с выходным током 120-130А.

Потребляемая мощность сварочного трансформатора, и аппарата в целом, будет равна:

P = U х.х. × I св. × cos(φ) / η

где U х.х. - напряжение холостого хода, I св. - ток сварки, φ - угол сдвига фаз между током и напряжением. Так как сам трансформатор является индуктивной нагрузкой, то угол сдвига фаз всегда существует. В случае расчета потребляемой мощности cos(φ) можно принять равным 0,8. η - КПД. Для сварочного трансформатора КПД можно принять равным 0,7.

Стандартная методика расчета трансформатора

Эта методика применима для расчета распространенных сварочных трансформаторов с увеличенным магнитным рассеянием, следующего устройства. Трансформатор изготовлен на основе П-образного магнитопровода. Его первичная и вторичная обмотки состоят из двух равных частей, которые расположены на противоположных плечах магнитопровода. Между собой половины обмоток соединены последовательно.

Для примера возьмемся рассчитать с помощью этой методики данные для сварочного трансформатора рассчитанного на рабочий ток вторичной катушки I 2 =160А, с выходным напряжением холостого хода U 2 =50В, сетевым напряжением U 1 =220В, значение ПР (продолжительность работы) примем, скажем, 20% (про ПР см. ниже).

Введем параметр мощности, учитывающий продолжительность работы трансформатора:

P дл = U 2 × I 2 × (ПР/100) 1/2 × 0.001
P дл = 50 × 160 (20/100) 1/2 × 0.001 = 3,58 кВт

где ПР - коэффициент продолжительности работы, %. Коэффициент продолжительности работы показывает, сколько времени (в процентах) трансформатор работает в дуговом режиме (нагревается), остальное время он находится в режиме холостого хода (остывает). Для самодельных трансформаторов ПР можно считать равным 20-30%. Сам ПР в общем-то не влияет на выходной ток трансформатора, впрочем, как и соотношения витков трансформатора не слишком-то сказываются на параметре ПР у готового изделия. ПР в большей степени зависит от других факторов: сечения провода и плотности тока, изоляции и способа укладки провода, вентиляции. Однако с точки зрения приведенной методики считается, что для различных ПР более оптимальными будут несколько отличные соотношения между количеством витков катушек и площадью сечения магнитопровода, хотя, в любом случае, выходная мощность остается неизменной, рассчитанная на заданный ток I 2 . Ничто не мешает принять ПР, скажем, 60% или все 100%, а эксплуатировать трансформатор на меньшем значении, как на практике обычно и происходит. Хотя, лучшее сочетание обмоточных данных и геометрии трансформатора обеспечивает выбор значения ПР пониже.

Для выбора числа витков обмоток трансформатора рекомендуется пользоваться эмпирической зависимостью электродвижущей силы одного витка E (в вольтах на виток):

E = 0,55 + 0,095 × P дл (P дл в кВт)
Е = 0,55 + 0,095 × 3,58 = 0,89 В/виток

Эта зависимость справедлива для широкого диапазона мощностей, однако наибольшую сходимость результатов дает в диапазоне 5-30 кВт.

Количество витков (сумма обеих половин) первичной и вторичной обмоток определяются соответственно:

N 1 = U 1 /E; N 2 = U 2 /E
N 1 = 220/0,89 = 247; N 2 = 50/0,89 = 56

Номинальный ток первичной обмотки в амперах:

I 1 = I 2 × k m /n

где k m =1.05-1.1 - коэффициент, учитывающий намагничивающий ток трансформатора; n = N 1 /N 2 - коэффициент трансформации.

n = 247/56 = 4,4
I 1 = 160 × 1,1/4,4 = 40 А

Сечение стали сердечника трансформатора (см 2) определяется по формуле:

S = U 2 × 10000/(4.44 × f × N 2 × B m)
S = 50 × 10000/(4.44 × 50 × 56 × 1,5) = 27 см 2

где f=50 Гц - промышленная частота тока; B m - индукция магнитного поля в сердечнике, Тл. Для трансформаторной стали индукция может быть принята B m =1.5-1.7 Тл, рекомендуется принимать ближе к меньшему значению.

Конструктивные размеры трансформатора приведены применительно к стержневой конструкции магнитопровода. Геометрические параметры магнитопровода в миллиметрах:

  • Ширина пластины стали из пакета магнитопровода
    a=(S×100/(p 1 ×k c)) 1/2 =(27×100/(2×0,95)) 1/2 =37,7 мм .
  • Толщина пакета пластин плеча магнитопровода
    b=a×p 1 =37,7×2=75,4 мм .
  • Ширина окна магнитопровода
    c=b/p 2 =75,4×1,2=90 мм .

где p 1 =1.8-2.2; p 2 =1.0-1.2. Измеряемая по линейным размерам сторон собранного трансформатора площадь сечения магнитопровода будет несколько больше рассчитанного значения, надо учитывать неизбежные зазоры между пластинами в наборе железа, и равняется:

S из = S/k c
S из = 27/0,95 = 28,4 см 2

где k c =0.95-0.97 - коэффициент заполнения стали.

Значение (a) подбирается ближайшее из сортамента трансформаторной стали, конечное значение (b) корректируется с учетом ранее выбранного (a), ориентируясь на полученные значения S и S из.

Высота магнитопровода методикой строго не устанавливается и выбирается исходя из размеров катушек с проводом, крепежных размеров, а также учитывается расстояние между катушками, которое выставляется при подстройке тока трансформатора. Размеры катушек определяются сечением провода, количеством витков и способом намотки.

Сварочный ток можно регулировать, перемещая секции первичной и вторичной обмоток относительно друг друга. Чем больше расстояние между первичной и вторичной обмотками, тем меньшим будет выходная мощность сварочного трансформатора.

Таким образом, для сварочного трансформатора со сварочным током 160А были получены значения основных параметров: суммарное количество витков первичных катушек N 1 =247 витков и измеряемая площадь сечения магнитопровода S из =28,4 см 2 . Расчет с теми же исходными данными, кроме ПР=100% даст несколько иные соотношения S из и N 1: 41,6 см 2 и 168 соответственно для того же тока 160А.

На что нужно обратить внимание, анализируя полученные результаты? Прежде всего, в этом случае соотношения между S и N для определенного тока действительны только для сварочного трансформатора, изготовленного по схеме с увеличенным магнитным рассеиванием. Если бы мы применили значения S и N, полученные для этого типа трансформатора, для другого трансформатора - построенного по схеме силового трансформатора (см. рисунок ниже), то выходной ток при тех же значениях S и N 1 значительно возрос бы, предположительно в 1,4-1,5 раза или пришлось бы примерно во столько же раз увеличить количество витков первичной катушки N 1 для сохранения заданной величины тока.

Сварочные трансформаторы, у которых секции вторичной катушки намотаны поверх первичной, получили значительное распространение при самостоятельном изготовлении сварочных аппаратов. Магнитный поток у них более сконцентрирован и энергия передается более рационально, хотя это приводит к ухудшению сварочных характеристик, которые однако, можно выправить дросселем или балластным сопротивлением.

Упрощенный расчет сварочного трансформатора

Неприемлемость во многих случаях стандартных методик расчета заключается в том, что они устанавливают для конкретной мощности трансформатора только единые значения таких основных параметров, как измеренная площадь сечения магнитопровода (S из) и количество витков первичной обмотки (N 1), хотя последние и считаются оптимальными. Выше было получено сечение магнитопровода для тока 160А, равное 28 см 2 . На самом деле сечение магнитопровода для той же мощности может варьироваться в значительных пределах - 25-60 см 2 и даже выше, без особой потери в качестве работы сварочного трансформатора. При этом под каждое произвольно взятое сечение необходимо рассчитать количество витков, прежде всего первичной обмотки, таким образом, чтобы получить на выходе заданную мощность. Зависимость между соотношением S и N 1 близка к обратно пропорциональной: чем больше площадь сечения магнитопровода (S), тем меньше понадобиться витков обеих катушек.

Самой важной частью сварочного трансформатора является магнитопровод. Во многих случаях для самоделок используются магнитопроводы от старого электрооборудования, которое до того ничего общего со сваркой не имело: всевозможные крупные трансформаторы, автотрансформаторы (ЛАТРы), электродвигатели. Часто эти магнитопроводы обладают весьма экзотической конфигурацией, а их геометрические параметры невозможно изменить. И сварочный трансформатор приходится рассчитывать под то, что есть, - нестандартный магнитопровод, используя нестандартную методику расчета.

Наиболее важными при расчете параметрами, от которых зависит мощность, являются площадь сечения магнитопровода, количество витков первичной обмотки и расположение на магнитопроводе первичной и вторичной обмоток трансформатора. Сечение магнитопровода в данном случае измеряется по наружным размерам сжатого пакета пластин, без учета потерь на зазоры между пластинами, и выражается в см 2 . При напряжении питания сети 220-240В, с незначительным сопротивлением в линии, можно рекомендовать следующие формулы приближенного расчета витков первичной обмотки, которые дают положительные результаты для токов 120-180А для многих типов сварочных трансформаторов. Ниже приведены формулы для двух крайних вариантов расположения обмоток.

Для трансформаторов с обмотками на одном плече (рисунок ниже, а):
N 1 = 7440 × U 1 /(S из × I 2)
Для трансформаторов с разнесенными обмотками (рисунок ниже, б):
N 1 = 4960 × U 1 /(S из × I 2)

где N 1 - примерное количество витков первичной обмотки, S из - измеренное сечение магнитопровода (см 2), I 2 - заданный сварочный ток вторичной обмотки (А), U 1 - сетевое напряжение.

При этом надо учитывать, что для трансформатора с разнесенными по разным плечам первичной и вторичной обмотками вряд ли удастся получить ток более 140А - сказывается сильное рассеивание магнитного поля. Нельзя также ориентироваться на ток выше 200А для остальных типов трансформаторов. Формулы носят весьма приближенный характер. Некоторые трансформаторы с особенно несовершенными магнитопроводами дают значительно более низкие показатели выходного тока. Кроме того, существует много таких параметров, которые нельзя определить и учесть в полной мере. Обычно неизвестно, из какого сорта железа изготовлен тот или иной, снятый со старого оборудования магнитопровод. Напряжение в электросети может сильно изменяться (190-250В). Еще хуже, если линия электропередачи обладает значительным собственным сопротивлением, составляя всего единицы Ома, оно практически не влияет на показания вольтметра, обладающего большим внутренним сопротивлением, но может сильно гасить мощность сварки. Учитывая все вышеизложенное, рекомендуется первичную обмотку трансформатора выполнять с несколькими отводами через 20-40 витков.

В этом случае всегда более точно можно будет подобрать мощность трансформатора или подрегулировать ее под напряжение конкретной сети. Количество витков вторичной обмотки определяется из соотношения (кроме "ушастика", например из двух ЛАТРов):

N 2 = 0,95 × N 1 × U 2 /U 1

где U 2 - желаемое напряжение холостого хода на выходе вторичной обмотки (45-60В), U 1 - напряжение сети.

Выбор сечения магнитопровода

Теперь мы знаем, как можно рассчитать витки катушек сварочного трансформатора под определенное сечение магнитопровода. Но остается вопрос - каким именно выбрать это сечение, особенно если конструкция магнитопровода позволяет варьировать его значение?

Оптимальное значение сечения магнитопрвода для типичного сварочного трансформатора было получено в примере расчета по стандартной методике (160А, 26 см 2). Однако далеко не всегда оптимальные с точки зрения энергетических показателей значения являются таковыми, а то и возможными вообще, с точки зрения конструктивных и экономических соображений.

Например, трансформатор одной и той же мощности может иметь сечения магнитопровода с разницей в два раза: скажем 30-60 см 2 . При этом количество витков обмоток будет различаться тоже примерно в два раза: для 30 см 2 придется мотать в два раза больше провода, чем для 60 см 2 . Если у магнитопровода небольшое окно, то вы рискуете тем, что все витки попросту не влезут в его объем или придется использовать очень тонкий провод - в этом случае необходимо увеличить сечение магнитопровода с целью уменьшения количества витков провода (актуально для многих самодельных трансформаторов). Вторая причина - экономическая. Если обмоточный провод в дефиците, то, учитывая его немалую стоимость, этот материал придется экономить по максимуму, если есть возможность, наращиваем магнитопровод до большего сечения. Но, с другой стороны, магнитопровод - самая тяжелая часть трансформатора. Лишняя площадь сечения магнитопровода - лишний и притом, весьма ощутимый вес. Проблема прибавки веса особенно сказывается тогда, когда трансформатор намотан алюминиевым проводом, вес которого намного меньше стали, а тем более меди. При больших запасах провода и достаточных размерах окна магнитопровода этот элемент конструкции имеет смысл выбирать потоньше. В любом случае не рекомендуется опускаться ниже значения 25 см 2 , не желательны также сечения выше 60 см 2 .

Подбор витков трансформатора опытным путем

В некоторых случаях о выходной мощности трансформатора можно судить по току первичной обмотки в режиме холостого хода. Вернее, здесь можно говорить не о количественной оценке мощности в режиме сварки, а о настройке трансформатора на максимальную мощность, на которую способна конкретная конструкция. Или же речь идет о контроле количества витков первичной обмотки, чтобы не допустить их недостатка в процессе изготовления. Для этого понадобится некоторое оборудование: ЛАТР (лабораторный автотрансформатор), амперметр, вольтметр.

В общем случае по току холостого тока нельзя судить о мощности: ток может быть разным даже для одинаковых типов трансформаторов. Однако, исследовав зависимость тока в первичной обмотке в режиме холостого хода, можно более уверенно судить о свойствах трансформатора. Для этого первичную обмотку трансформатора надо подключить через ЛАТР, что позволит плавно менять напряжение на ней от 0 до 240В. В цепь также должен быть включен амперметр.

Постепенно увеличивая напряжение на обмотке, можно получить зависимость тока от питающего напряжения. Она будет иметь следующий вид.

Сначала кривая тока полого, почти линейно возрастает до небольшого значения, далее скорость возрастания увеличивается - кривая загибается вверх, после чего следует стремительное увеличение тока. В случае, когда устремление кривой к бесконечности происходит до напряжения 240В (кривая 1), то это значит, что первичная обмотка содержит мало витков и ее необходимо домотать. Надо учитывать, что трансформатор, включенный на то же напряжение без ЛАТРа, будет брать ток примерно на 30% больше. Если же точка рабочего напряжения лежит на изгибе кривой, то при сварке трансформатор будет выдавать свою максимальную мощность (кривая 2). В случае кривых 3, 4 трансформатор будет иметь ресурс мощности, которую можно увеличить путем уменьшения витков первичной обмотки, и незначительный ток холостого хода: большинство самоделок ориентированы на это положение. Реально токи холостого хода различны для разных типов трансформаторов, в большинстве случаев находясь в интервале 100-500 мА. Не рекомендуется устанавливать ток холостого хода более 2А.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Сварочные трансформаторы по фазности электрического тока подразделяются на однофазные и трехфазные, а по количеству постов - на однопостовые и многопостовые. Однопостовой трансформатор служит для питания сварочным током одного рабочего места и имеет соответствующую внешнюю характеристику.
Многопостовой трансформатор служит для одновременного питания нескольких сварочных дуг (сварочных постов) и имеет жесткую характеристику. Для создания устойчивого горения сварочной дуги и обеспечения падающей внешней характеристики в сварочную цепь дуги включают дроссель. Для дуговой сварки сварочные трансформаторы подразделяются по конструктивным особенностям на две основные группы:
трансформаторы с нормальным магнитным рассеянием, конструктивно выполненные в виде двух раздельных аппаратов (трансформатор и дроссель) или в едином общем корпусе;
трансформаторы с развитым магнитным рассеянием, конструктивно различающиеся по способу регулирования (с подвижными катушками, с магнитными шунтами, со ступенчатым регулированием).
В СССР нашли применение трансформаторы обеих групп, а за последние годы преимущественно трансформаторы в однокорпусном исполнении с развитым магнитным рассеянием и с магнитными шунтами.
Трансформаторы с нормальным магнитным рассеянием.
Трансформаторы с отдельным дросселем. Жесткая внешняя характеристика такого трансформатора получается за счет незначительного магнитного рассеяния и малого индуктивного сопротивления обмоток трансформатора. Падающие внешние характеристики создаются дросселем, имеющим большое индуктивное сопротивление.
Технические данные трансформаторов СТЭ-24У и СТЭ-34У с дросселями приведены в табл. 23.

Таблица 23

Технические характеристики сварочных трансформаторов


Продолжение табл. 23


Трансформаторы типа СТН со встроенным дросселем. По этой конструктивной схеме выполнены трансформаторы СТН-500 и СТН-500-1 для ручной дуговой сварки и трансформаторы с дистанционным управлением ТСД-500, ТСД-2000-2, ТСД-1000-3 и ТСД-1000-4 для автоматической и полуавтоматической сварки под флюсом. Технические данные указанных трансформаторов приведены в табл. 23.
Схема конструкции трансформатора типа СТН системы академика В. П. Никитина и его внешние статические характеристики показаны на рис. 58. Магнитное рассеяние и индуктивное сопротивление обмоток (1 и 2 ) трансформатора невелики, внешняя характеристика жесткая. Падающая характеристика создается за счет реактивиой обмотки 3 , создающей индуктивное сопротивление. Верхняя часть магнитопровода является одновременно и частью сердечника дросселя.


Величина сварочного тока регулируется перемещением подвижного пакета 4 (винтовым механизмом с помощью рукоятки 5 ). Напряжение холостого хода у этих трансформаторов 60 - 70 в , а номинальное рабочее напряжение U ном = 30 в . Несмотря на объединенный магнитопровод, трансформатор и дроссель работают независимо друг от друга. В электротехническом отношении трансформаторы типа СТН не отличаются от трансформаторов с отдельными дросселями типа стэ.
Для автоматической и полуавтоматической сварки применяют трансформаторы типа ТСД. Общий вид конструкции трансформатора ТСД-1000-3 и его электрическая схема показаны на рис. 59 и 60.




Трансформаторы типа ТСД имеют повышенное напряжение холостого хода (78 - 85 в ), необходимое для стабильного возбуждения и горения сварочной дуги при автоматической сварке под флюсом.
Падающая внешняя характеристика трансформатора создается реактивной обмоткой 4 . Трансформатор типа ТСД имеет специальный электропривод для дистанционного регулирования сварочного тока. Для включения приводного синхронного трехфазного электродвигателя ДП с понижающим червячным редуктором служат два магнитных пускателя ПМБ и ПММ, управляемые кнопками. Перемещение подвижной части пакета магнитопровода ограничивается конечными выключателями ВКБ и ВКМ.
Трансформаторы снабжены фильтрами для подавления радиопомех. Кроме применения для автоматической и полуавтоматической сварки под флюсом, трансформаторы ТСД-1000-3 и ТСД-2000-2 применяются в качестве источника питания для термической обработки сварных соединений из легированных и низколегированных сталей.
Трансформаторы с развитым магнитным рассеянием. Трансформаторы типа ТС и ТСК представляют собой передвижные понижающие трансформаторы стержневого типа с повышенной индуктивностью рассеяния. Они предназначены для ручной дуговой сварки и наплавки, могут применяться для сварки под флюсом тонкими проволоками. В трансформаторах типа ТСК параллельно первичной обмотке подключен конденсатор для повышения коэффициента мощности.
Трансформаторы типа ТС, ТСК не имеют подвижных сердечников, склонных к вибрации, поэтому они работают почти бесшумно. Регулирование сварочного тока осуществляется изменением расстояния между подвижной I и неподвижной II катушками (рис. 61, в). При удалении подвижной катушки от неподвижной увеличиваются магнитные потоки рассеяния и индуктивное сопротивление обмоток. Каждому положению подвижной катушки соответствует своя внешняя характеристика. Чем дальше находятся друг от друга катушки, тем большее число магнитных силовых линий будет замыкаться через воздушные пространства, не захватывая второй обмотки, и тем круче будет внешняя характеристика. Напряжение холостого хода в трансформаторах этого типа при сдвинутых катушках на 1,5 - 2 в больше номинального значения (60 - 65 в ).

Конструкция трансформатора ТС-500 и внешние вольт-амперные характеристики показаны на рис. 61,а,б. Технические данные трансформаторов ТС и ТСК приведены в табл. 23.
Трансформаторы с магнитными шунтами типа СТАН, ОСТА и СТШ.
Разработанные Институтом электросварки имени Е. О. Патона сварочные трансформаторы типа СТШ-500 (А-760) имеют высокие эксплуатационные показатели и большой срок службы по сравнению с трансформаторами типа ТС, ТСК, ТД.
Трансформатор СТШ стержневого типа, однофазный, выполнен в однокорпусном исполнении и предназначен для питания электрической сварочной дуги переменным током частотой 50 гц при ручной дуговой сварке, резке и наплавке металлов. На рис. 62 показана схема трансформатора СТШ-500.

Магнитопровод (сердечник трансформатора) изготовляется из электротехнической стали Э42 толщиной 0,5 мм . Стальные листы соединяют изолированными шпильками.
Катушки первичной обмотки трансформатора выполнены из изолированного алюминиевого провода прямоугольного сечения, а вторичной - из голой алюминиевой шины, между витками которой прокладывают асбестовые прокладки, предназначенные для изоляции витков от короткого замыкания.
Регулятор тока состоит из двух подвижных магнитных шунтов, расположенных в окне магнитопровода. Вращением винта по часовой стрелке шунты раздвигаются, а против часовой - сдвигаются, происходит плавное регулирование сварочного тока. Чем меньше расстояние между шунтами, тем меньше сварочный ток, и наоборот. Шунты изготовляют из той же электротехнической стали, что и мапштопровод.
Для снижения помех радиоприемным устройствам, возникающих при сварке, применяют емкостный фильтр из двух конденсаторов типа КБГ-И. Конденсаторы смонтированы на стороне высокого напряжения.
В настоящее время создан ряд новых переносных источников питания сварочной дуги переменным током - малогабаритные трансформаторы . Примерами таких трансформаторов являются, например, монтажные трансформаторы ТМ-300-П, ТСП 1 и ТСП-2.
Монтажный трансформатор ТМ-300-П предназначен для питания сварочной дуги при однопостовой дуговой сварке на монтажных, строительных и ремонтных работах. Трансформатор обеспечивает крутопадающую внешнюю характеристику (с отношением тока короткого замыкания к току номинального рабочего режима 1,2 - 1,3) и ступенчатое регулирование сварочного тока, что позволяет выполнять сварку электродами диаметром 3, 4 и 5 мм . Он однокорпусной, имеет малый вес и удобен для транспортирования. Трансформатор ТМ-300-П имеет разделенные обмотки, что позволяет получать значительное индуктивное сопротивление для создания падающих внешних характеристик. Магнитопровод стержневого типа набирается из холоднокатаной текстурированной стали Э310, Э320, Э330 толщиной 0,35 - 0,5 мм . Электрическая схема трансформатора приведена на рис. 63.

Первичная обмотка состоит из двух катушек одинакового размера, полностью размещенных на одном стержне магнитопровода. Вторичная обмотка также состоит из двух катушек, из которых одна - основная - размещается на стержне магнитопровода вместе с первичной обмоткой, а вторая - реактивная - имеет три отпайки и размещается на другом стержне магнитопровода.
Реактивная вторичная обмотка значительно удалена от первичной обмотки и имеет большие потоки рассеяния, определяющие повышенное индуктивное ее сопротивление. Величина сварочного тока регулируется переключением числа витков реактивной обмотки. Такое регулирование тока позволяет увеличить напряжение холостого хода при малых токах, обеспечивая условия для устойчивого горения сварочной дуги.
Первичную обмотку выполняют из медного провода с изоляцией, а вторичную обмотку наматывают шинкой. Обмотки пропитывают кремнийорганическим лаком ФГ-9, что позволяет повышать температуру их нагрева до 200° С. Магнитопровод с обмотками размещается на тележке с двумя колесами. Для сварки в монтажных условиях электродами диаметром 3 и 4 мм применяют облегченный трансформатор ТСП-1. Трансформатор рассчитан на кратковременную работу при коэффициенте загрузки поста менее 0,5 и электродах диаметром до 4 мм . Электрическая схема и внешние характеристики такого трансформатора показаны на рис. 64. Вследствие большого расстояния между первичной обмоткой А и вторичной обмоткой Б образуются значительные потоки магнитного рассеяния. Падение напряжения за счет индуктивного сопротивления обмоток обеспечивает крутопадающие внешние характеристики.


Регулирование сварочного тока ступенчатое, как и у сварочного трансформатора ТМ-300-П.
Для уменьшения веса конструкция трансформатора выполнена из высококачественных материалов - магнитопровод - из холоднокатаной стали, а обмотки - из алюминиевых проводов с теплостойкой стеклянной изоляцией.
Технические данные трансформатора ТСП-1 приведены в табл. 23.
Для сварки в монтажных условиях выпускаются также малогабаритные облегченные сварочные трансформаторы СТШ-250 с плавным регулированием сварочного тока, разработанные Институтом электросварки имени Е. О. Патона, и ТСП-2, разработанные Всесоюзным научно-исследовательским институтом электросварочного оборудования. Основные технические данные этих трансформаторов приведены в табл. 24.

Таблица 24

Технические характнристики трансформаторов СТШ-250 и ТСП-2

Для выполнения сварочных работ на различной высоте в монтажных условиях создан специальный сварочный трансформатор ТД-304 на салазках, оборудованный дистанционным регулированием сварочного тока непосредственно с рабочего места электросварщика. Основные технические данные такого трансформатора в сравнении с трансформатором ТС-300 приведены в табл. 25.

Таблица 25

Технические характеристики трансформаторов ТД-304 и ТС-300