Правило знаков изгибающих моментов и поперечных сил. Правила знаков для поперечной силы и изгибающего момента Момент считается положительным если

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы (рисунок 4).

Рисунок 4 – Момент силы F относительно точки О

При закреплении тела в точке О сила F стремится поворачивать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента, а длина перпендикуляра а называется плечом силы относительно центра момента.

Момент силы F относительно О определяется произведением силы на плечо.

М О (F) = F·a.

Момент принято считать положительным, если сила стремится вращать тело по часовой стрелке, а отрицательным - против часовой стрелки. Когда линия действия силы проходит через данную точку, момент силы относительно этой точки равен нулю, так как в рассматриваемом случае плечо а = 0 (рисунок 5).

Рисунок 5 – Определение знака момента силы относительно точки

Между моментом пары и моментом силы есть одно существенное различие. Численное значение и направление момента пары сил не зависят от положения этой пары в плоскости. Значение и направление (знак) момента силы зависят от положения точки, относительно которой определяется момент.

Уравнения равновесия плоской системы сил

Условия равновесия сил на плоскости: для равновесия системы сил, произвольно расположенных в плоскости, необходимо и достаточно, чтобы главный вектор и главный момент этих сил относительно любого центра каждый в отдельности равнялся нулю.

F ГЛ = 0; М ГЛ = Σ М О (F i) = 0.

Получим основную форму уравнения равновесия:

Теоретически уравнений моментов можно записать бесконечное множество, но практически для решения задач на плоскости достаточно трех уравнений равновесия. В каждом конкретном случае используются уравнения с одним неизвестным.

Для разных случаев используются три группы уравнений рав­новесия:

1. Первая форма уравнений равновесия

2. Вторая форма уравнений равновесия

3. Третья форма уравнений равновесия

Для системы параллельных сил (рисунок 43), можно составить только два уравнения равновесия:



Пример.

Дано: F = 24 кH; q = 6 кН/м; М = 12 кН·м α = 60°; а = 1,8 м; b = 5,2 м; с = 3,0 м. Определить реакции V A , H A и V В (рисунок 6).

Рисунок 6 – Заданная двухопорная балка

Отбрасываем связи (опоры А и В), заменяем их действие реакциями: неподвижная опора имеет реакции V А (вертикаль­ная) и H А (горизонтальная). Подвижная опора - реакцию V B (вертикальная). Выби­раем систему координат ХУ с началом в левой опоре, определяем равнодействующую распределенной нагрузки:

Q = q·a 2 = 6·5,2 = 31,2 кН.

Чертим расчетную схему балки (рисунок 7).

Рисунок 7 – Расчётная схема балки

Для полученной произвольной плоской системы сил составляем уравнения рав­новесия:

∑F ix = 0; H A – F·cos60° = 0;

∑F i у = 0; V A – F·cos30° – Q + V B = 0;

∑М А (F i) = 0; Q·(1,8 + 2,6) + F·cos30°·(1,8 + 5,2) – М – V B ·(1,8 + 5,2 + 3) = 0.

Решаем систему уравнений.

H A = F·cos60° = 24·0,5 = 12 кН;

V A = F·cos30° + Q – V B = 24·0,866 + 31,2 – 27,08 = 24,9 кН.

Для проверки правильности решения составим сумму моментов относительно точки приложения наклонной силы F:

∑М А (F i) = V A ·(1,8 + 5,2) – Q·2,6 – М – V B ·3 = 24,9·7 – 31,2·2,6 – 12 – 27,08·3 = – 0,06.

Ответ: опорные реакции балки равны V A = 24,9 кН; V В = 27,08 кН; Н А = 12 кН.

Контрольные вопросы:

1. Что определяет эффект действия пары сил?

2. Зависит ли эффект действия пары сил от её положения в плоскости?

3.Зависят ли значения и направление момента силы относительно точки от взаимного расположения этой точки и линии действия силы?

4. Когда момент силы относительно точки равен нулю?

5. Сколь независимых уравнений равновесия можно составить для плоской системы параллельных сил?

Которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

где F - сила, l — плечо силы.

Плечо силы - это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле-чом силы F t здесь оказывается расстояние l , от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н , плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М 1 вращающей его по часовой стрелке, равняется моменту силы М 2 , которая вращает его против часовой стрелки:

Правило моментов есть следствие одной из теорем механики , которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил . Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары , независимо от того, на какие отрезки l , и разделяет положение оси плечо пары:

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.

Внешняя сила, действующая на отбрасываемую часть балки и стремящаяся повернуть ее относительно сечения по ходу часовой стрелки, входит в алгебраическую сумму для определения поперечной силы () со знаком плюс (рис. 7.5, а). Заметим, что положительная поперечная сила () «стремится вращать» любую из частей балки также по ходу часовой стрелки.

Говоря простым языком: в сечении балки возникает , которую нужно определить и изобразить на . Чтобы правило знаков для поперечных сил выполнялось, нужно запомнить:

Если поперечная сила возникает справа от сечения, она направлена вниз, а если поперечная сила возникает слева от сечения – вверх (рис. 7.5, а).

Для удобства определения знака изгибающего момента рекомендуется поперечное сечение балки мысленно представлять в виде неподвижной .

Иными словами: по правилу знаков изгибающий момент положителен, если «гнет балку» вверх, независимо от исследуемой части балки. Если в выбранном сечении результирующий момент всех внешних сил, порождающих изгибающий момент (является внутренней силой), направлен противоположно направлению изгибающего момента по правилу знаков , то изгибающий момент будет положительным.

Допустим, рассматривается левая часть балки (рис. 7.5, б). Момент силы P относительно сечения направлен по часовой стрелке. По правилу знаков для изгибающих моментов для левой части балки изгибающий момент положителен, если направлен против часовой стрелки («гнет балку» вверх). Значит, изгибающий момент будет положительным (сумма моментов внешних сил и изгибающий момент по правилу знаков противоположно направлены).

Действие одной силы или системы сил на твёрдое тело может быть связано не только с поступательным, но и с вращательным движением. Как известно, силовым фактором вращательного движения является момент силы.

Рассмотрим гайку, которую затягивают гаечным ключом определённой длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то, прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы .

Понятие момента силы относительно точки ввёл в механику итальянский учёный и художник эпохи Возрождения Леонардо да Винчи.

Моментом силы относительно точки называется произведение модуля силы на ее плечо (рис. 5.1):

Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы.

Единица момента силы в системе СИ:

[М] = [Р] · [h] = сила длина = ньютон метр = Н м .

Рис. 5.1. Момент силы относительно точки

б )

Рис. 6.1

Понятие пары сил введено в механику в начале XIX в. французским учёным Пуансо, который разработал теорию пар. Рассмотрим основные понятия.

Любые две силы, кроме сил, образующих пару, можно заменить равнодействующей. Пара сил не имеет равнодействующей, и никакими способами пару сил нельзя преобразовать к одной эквивалентной силе. Пара – такой же самостоятельный простейший механический элемент, как и сила.

Плоскость, в которой лежат силы, образующие пару, называют плоскостью действия пары . Кратчайшее расстояние между линиями сил, образующих пару, называют плечом пары h . Произведение модуля одной из сил пары на её плечо называют моментом пары и обозначают

М = ± Ph . (6.1)

Действие пары на тело характеризуется моментом, стремящимся вращать тело. При этом, если пара сил вращает тело против часовой стрелки, то момент такой пары считается положительным, если по часовой стрелке, то момент считается отрицательным.

Свойства пар

Не изменяя действия на тело, пару сил можно:

1) как угодно перемещать в её плоскости;

2) переносить в любую плоскость, параллельную плоскости действия этой пары;

3) изменять модуль сил и плечо пары, но так, чтобы ее момент (т. е. произведение модуля силы на плечо) и направление вращения оставались неизменными;

4) алгебраическая сумма проекций сил, образующих пару, на любую ось равна нулю;

5) алгебраическая сумма моментов сил, образующих пару, относительно любой точки постоянна и равна моменту пары.

Две пары считают эквивалентными, если они стремятся вращать тело в одну сторону и их моменты численно равны. Пару может уравновесить только другая пара с моментом, имеющим противоположный знак.

Сложение пар

Система пар, лежащих в одной плоскости или параллельных плоскостях, эквивалентна одной равнодействующей паре , момент которой равен алгебраической сумме моментов слагаемых пар, т. е.

Равновесие пар

Плоская система пар находится в равновесии, если алгебраическая сумма моментов всех пар равна нулю, т. е. .

Часто бывает удобным представить момент пары в виде вектора. Вектор-момент пары направлен перпендикулярно к плоскости действия пары в сторону, откуда вращательное действие пары наблюдается против часовой стрелки (рис. 6.2).

Рис. 6.2. Вектор-момент пары сил

Пример 7. На балку, свободно опирающуюся на гладкий уступ А и шарнирно укреплённую в точке В, действует пара с моментом М = 1500 Нм. Определить реакции в опорах, если l = 2 м (рис. 6.3, а ).

Решение . Пару может уравновесить только другая пара с равным, но противоположно направленным моментом (рис. 6.3, б ). Следовательно,

Инструкция

Пусть Q – точка, относительно которой рассматривается момент силы. Эта точка называется полюсом. Проведите радиус-вектор r из этой точки к точке приложения силы F. Тогда момент силы M определяется как векторное произведение r на F: M=.

Результатом векторного произведения является вектор. Длина вектора выражается модулем: |M|=|r|·|F|·sinφ, где φ – угол между r и F. Вектор M ортогонален как вектору r, так и вектору F: M⊥r, M⊥F.

Направлен вектор M таким образом, что тройка векторов r, F, M является правой. Как определить, что тройка векторов именно правая? Представьте себе, будто вы (ваш глаз) находитесь на конце третьего вектора и смотрите на два других вектора. Если кратчайший переход от первого вектора ко второму кажется происходящим против часовой стрелки, это правая тройка векторов. В противном случае, вы имеете дело с левой тройкой.

Итак, совместите начала векторов r и F. Это можно сделать параллельным переносом вектора F в точку Q. Теперь через эту же точку проведите ось, перпендикулярную плоскости векторов r и F. Данная ось будет перпендикулярна векторам сразу. Тут возможны, в принципе, только два варианта направить момент силы: вверх или вниз.

Попробуйте направить момент силы F вверх, нарисуйте стрелочку вектора на оси. Из этой стрелочки как бы взгляните на вектора r и F (можете символический глаз). Кратчайший переход от r к F можете обозначить закругленной стрелочкой. Является ли тройка векторов r, F, M правой? Стрелочка указывает направление против часовой стрелки? Если да, то вы верное направление для момента силы F. Если же нет, значит, надо сменить направление на противоположное.

Определить направление момента силы можно также по правилу правой руки. Указательный палец совместите с радиус-вектором. Средний палец совместите с вектором силы. С конца поднятого вверх большого пальца посмотрите на два вектора. Если переход от указательного к среднему пальцу осуществляется против часовой стрелки, то направление момента силы совпадает с направлением, которое указывает большой палец. Если переход идет по часовой стрелке, то направление момента силы противоположно ему.

Правило буравчика очень похоже на правило руки. Четырьмя пальцами правой руки как бы вращайте винт от r к F. Векторное произведение будет иметь то направление, куда закручивается буравчик при таком мысленном вращении.

Пусть теперь точка Q располагается на той же прямой, которая содержит вектор силы F. Тогда радиус-вектор и вектор силы будут коллинеарны. В этом случае их векторное произведение вырождается в нулевой вектор и изображается точкой. Нулевой вектор не имеет никакого определенного направления, но считается сонаправленным любому другому вектору.

Чтобы правильно рассчитать действие силы, вращающей тело, определите точку ее приложения и расстояние от этой точки до оси вращения. Это важно для определения технических характеристик различных механизмов. Крутящий момент двигателя можно рассчитать, если известна его мощность и частота вращения.

Вам понадобится

  • Линейка, динамометр, тахометр, тестер, тесламетр.

Инструкция

Определите точку или ось, вокруг которой тело. Найдите точку приложения силы. Соедините точку приложения силы и точку вращения, или опустите перпендикуляр на ось вращения. Измерьте это расстояние, оно «плечо силы». Измерение проводите в метрах. Силу измерьте в ньютонах с помощью динамометра. Измерьте угол между плечом и вектором силы. Для расчета вращающего момента найдите произведение силы и синус угла между ними M=F r sin(α). Результат получите в ньютонах на метр.