Оптрон принцип работы. Оптроны

Оптрон — это функциональное устройство, которое состоит из фотоизлучателя, фотоприемника и световода и осуществляет при работе преобразования оптических сигналов в электрические, а электрических в оптические.

Назначения. В электрической схеме оптрон выполняет функцию элемента связи, в одном из звеньев которого информация передается оптически. Это основное назначения оптрона. Если между элементами оптрона обеспечить обратную связь, то оптрон становится оптическим прибором, пригодным для усиления и генерирования электрических и оптических сигналов.

Класификация. Оптроны чаще всего классифицируют по виду оптической связи. Различают оптроны с внутренней и внешней оптической связью. Оптроны с внутренней оптической связью еще разделяют по виду внутренней связи. Различают оптроны с внутренной прямой оптической связью и оптроны с внутренной обратной оптической связью. Еще их классифицируют по виду обратной связи. Бывают оптроны с внутренной положительной обратным оптической связью и оптроны с внутренной отрицательной обратной оптической связью. Как будет показано ниже, основным элементом, который определяет функциональные возможности оптрона, является фотоприемник. Поэтому оптроны еще классифицируют по виду фотоприемников. Различают резисторные, диодные, транзисторные, тиристорные и комбинированные оптроны.

Рис. 1. Условные изображения оптронов: а — транзисторный; б — диодный; в — резисторный; г — с составным транзистором; д — тиристорный; е — дифференциальный; ж- диодно-транзисторный

Условные изображения и обозначения. Условные изображения оптронов на схемах приведены на рис. 1. Условные обозначения оптронов в текстах объединяют семь символов, обозначающих
материал, класс и подкласс устройства, частотный диапазон работы, порядковый номер разработки, разделение на параметрические группы. Например, обозначение АОД130А означает: арсенидгалиевый оптрон диодный, частотный диапазон работы 1, порядковый номер разработки 30, параметрическая группа А.

Рис. 2. Основные элементы оптронов с внутренним (а) и внешним (б) оптическими связями

Строение. Оптрон с внутренной оптической связью представляет собой четырехполюсник (рис. 2, а), который состоит из трех основных элементов: фотоизлучателя (источники света) 1, световода 2 и приемника света (фотоприемника) 3, помещенных в общий герметичный светонепроницаемый корпус. Оптрон с внешней оптической связью представляет собой двухполюсник, который имеет один оптический вход и один оптический выход (рис. 2, б). Он состоит из фотоприемника 3, усилителя 4, фотоизлучателя 1 и не имеет световода. В современных оптронах как фотоизлучатели преимущественно используют инжекционные диоды (светодиоды), реже — люминесцентные конденсаторы, а как фотоприемники-фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Для достижения высоких
значений параметров недостаточно использовать высокоэффективные фотоизлучатели и фотоприемники. Необходимо обеспечить их согласование по спектральным характеристикам, быстродействием,
габаритами, температурными характеристиками. Согласованными опттронными парами есть элементы, приведенные в табл. 3.4. Световод оптрона (оптическая среда) имеет тройное назначение: свести к минимуму потери при передаче энергии от фотоизлучателя к фотоприемнику, обеспечить высокие значения параметров гальванической развязки, создать конструктивно целостный прибор. Как оптическая среда преимущественно используют полимерные оптические клеи и лаки, которые имеют высокую адгезию до полупроводниковых кристаллов, добрые диэлектрические свойства, высокую эластичность, низкую стоимость. Одновременно они имеют существенные недостатки: коэффициенты преломления этих материалов (n ≈ 1,5) существенно отличаются от коэффициентов преломления кремния и арсенида галлия (n ≈ 3,2-3,4) спектральные характеристики полимеров имеют в ближней ИК-области много провалов, обусловленных резонансным поглощением групп ОН, СH 3 , СH 2 , NН, что при значительных размерах световода может влиять на светоотдачу; для полимерных световодов характерно старение.

Таблица 3.4. Согласованные пары «фотоизлучатель-фотоприемник»

Если жесткость оптрона обеспечивается элементами конструкции, то как оптическая среда могут использовать вазелиноподобные силиконовые смазки, которые не засыхают. Перспективными с точки зрения улучшения оптической связи между фотоизлучателем и фотоприемником, является халькогенидное стекло (n ≈ 1,8..3,0). Его недостатком является низкая адгезия к полупроводникам, высокая хрупкость, плохие изолирующие свойства (p = 10 9 … 10 11 Ом см), низкая устойчивость к термоциклов. Реальные конструкции оптронов (рис.3) призваны не только обеспечить предельно высокие значения определяющих параметров, но и расширить функциональные возможности этих приборов.

Робота. Работу оптрона с внутренной прямой оптической связью можно проиллюстрировать с помощью его электрической схемы (рис. 4, а), с которой видно, что входной и выходной сигналы оптрона являются электрическими. Между его элементами отсутствует электрический, но имеющийся оптическая связь. При подаче на вход оптрона электрического сигнала возбуждается фотоизлучитель, световой поток которого по световоду попадает в фотоприемник. На его выходе формируется электрический сигнал, который свидетельствует о том, что в оптроне состоялось преобразования по схеме электрический сигнал — оптический — электрический.

Рис. 3. Разновидности оптронов: оптрон в DIP-корпусе (а), высоковольтный (б), энергетический (в), оптрон с пластмассовой полусферой (г), оптоперыватель (д), отражающий оптрон (е): 1 -фотоизлучатель; 2 — фотоприемник; 3 — световод; 4 — корпус; 5 — внешние выводы; Ме — металлические электроды

Рис. 4. Электрическая схема (а) и передаточная характеристика (б) оптрона с внутренной прямой оптической связью

В оптроне с внутренним обратной положительной связью фотоприемник и источник света соединены последовательно (рис. 5, а). В нем два входа (оптический и электрический) и два аналогичных выхода.

Рис. 5. Электрическая схема (а) и вольт-амперная характеристика (б) оптрона с внутренной обратной положительной оптической связью

Между его элементами являются электрическая связь. Конструктивно оптрон выполнен так, что часть исходного светового потока попадает обратно в фотоприемник. Это приводит к уменьшению сопротивления, увеличение яркости свечение, дальнейшего уменьшения сопротивления. Этот процесс имеет нарастающий характер и продолжается до тех пор, пока изменение сопротивления не будет существенно влиять на величину тока или напряжения, которые подводятся к источнику света. Для этого достаточно, чтобы выполнялось условие:

когда,

где, и — минимальное сопротивление фотодиода и сопротивление источника света; и — входной и входной максимальный токи оптрона; и — исходная и
выходная максимальная яркость свечения.
На практике такой режим работы оптрона называется состоянием «Включен». Состоянию «выключено» соответствует условие:

Переход оптрона из состояния «выключено» в положение «вкл» происходит скачком и сопровождается лавинообразным изменением тока и яркости в электрическом и оптическом кругах.
В оптроне с внутренной обратной отрицательной оптической связью фотоприемник и источник света соединены параллельно (рис. 6, а). Он тоже имеет два входа (электрический и оптический) и два аналогичных выхода. Между его элементами тоже есть электрическая связь. Конструктивно оптрон выполнено так, что часть исходного светового потока падает обратно в фотоприемник. Это приводит к уменьшению сопротивления фотоприемника и все большего шунтирование ним источники света, в результате этого начинает слабее светить.

В оптроне с внешной оптической связью входной и выходной сигналы являются оптическими. Его элементы соединены между собой электрической связью.

Рис. 7. Электрическая схема (а) и передаточная характеристика (б) оптрона с внешной оптической связью

При подаче на вход оптрона оптического сигнала уменьшается сопротивление фотоприемника, вследствие чего возрастает ток через фотоизлучатель и соответственно растет яркость его свечения.

Свойства. Свойства оптронов определяют их характеристики и параметры. Различают входящие, исходящие, вольт-амперные и передаточные характеристики, их вид в значительной степени определяется электрической схеме оптрона и характером имеющихся оптических связей. Для оптронов с внутренной прямой оптической связью информативным является передаточная характеристика, выражающая
зависимость выходного электрического сигнала от входного. Для них любое изменение тока или напряжения фотоизлучения сопровождается соответствующими изменениями яркости его свечения, сопротивления фотоприемника и выходного тока оптрона. Поэтому его передаточная характеристика, выражающая зависимость выходного тока от входного, имеет вид, изображенный на рис. 4, б. Видно, что оптрон с внутренной прямой оптической связью можно рассматривать как элемент переменного сопротивления, величина которого определяется входным током или входным напряжением. Для оптронов с внутренной обратной положительной оптической связью основной является входная вольт-амперная характеристика, ее специфическая особенность заключается в наличии участка с отрицательным дифференциальным сопротивлением, на которой напряжение падает, а ток возрастает. По внешнему виду она напоминает вольт амперные характеристики, электромагнитного реле или триггера (рис. 5, б).
Для оптронов с внутренной обратной отрицательной оптической связью основной тоже есть входная вольт-амперная характеристика. Ее вид приведен на рис. 6, б. Анализ формы кривой показывает, что при одинаковом спектральном составе входного и выходного излучений наблюдается монохроматическое усиления светового потока. Если же спектральный состав входного и выходного излучений разный, то наблюдается преобразования излучения. Оптрон с внешной оптической связью играет роль усилителя оптических сигналов (рис. 7).

Система параметров оптронов содержит параметры четырех групп:
1. Параметры, описывающие входную характеристику оптронов.
2. Параметры, которые описывают исходную характеристику оптронов.
3. Параметры, описывающие передающую характеристику оптронов.
4. Параметры, описывающие гальваническую развязку оптронов.

Поскольку на входе оптронов являются светодиоды или электролюминесцентные конденсаторы, а на выходе — фотодиоды, фототранзисторы, фоторезисторы, фототиристоры, то специфическим для оптронов есть только параметры двух последних групп. Степень влияния фотоизлучателя на фотоприемник (передающая характеристика) определяется:
— коэффициентом передачи тока применяемый для диодных и транзисторных оптронов;

— отношением темнового сопротивления к световому: или величиной светового сопротивления , которые применяют для резисторных оптронов;
— минимальным входным током, который обеспечивает выпрямлены входные характеристики , что применяют для тиристорных оптронов.

К ним относятся и параметры, характеризующие инерционность оптрона в импульсном режиме (время включения и выключения и ) и в высокочастотном (предельная частота ). Качество гальванической развязки в статике и динамике определяется заданием напряжения и сопротивления гальванической развязки (связи) и и проходной емкости (емкости связи).
Транзисторные оптроны характеризуются наибольшей схемотехнической гибкостью, имеют высокое значение коэффициента передачи тока, но по сравнению небольшое быстродействие (). Особенно большие значения , (до 600 … 800%) достигают в оптроне с составным транзистором. Диодные оптроны, производящих преимущественно с использованием р- и n -фотоприемников, отмечаются большим быстродействием , но значение для них составляет единицы процентов, поэтому необходимо усиление видеоизображений.
Диодные интегрированные оптроны, которые изготавливают по планарной технологии с применением GaAs -свитлодиодив и Si — p — i — n -фотодиодов, разделенных иммерсионной средой из стекла (n = 2,7), подобно диодных неинтегрированных оптронов, имеют высокое быстродействие и малый коэффициент передачи тока (единицы процентов). Расположение их передающих характеристик на координатной плоскости, которыми определяют коэффициент передачи тока, существенно зависит от температуры (рис. 8). Сопротивление изоляции между выходом и входом, которым определяется степень развязки по постоянному току, составляет 10 8 … 10 12 Ом. Качество решения по переменным током зависит от проходной емкости, составляет единицы .

Рис. 8. Температурная зависимость передающих характеристик диодного оптрона с внутренной оптической связью

Рис. 9. Выходная характеристика оптрона в фотовентильном режиме (— точка выделения mах мощности)

Одна из важных особенностей диодных оптронов — способность работать в фотовентильном режиме без подачи внешнего напряжения на фотоприемник (Рис. 9). Оптрон выступает как управляющий изолированный источник питания. Серийные оптроны в фотовентильном режиме имеют, как правило, невысокий КПД (<0,5 … 1%), но достижения на лабораторных образцах КПД 10 … 15% и
возможность батарейного соединения оптронов служат основой для создания специфической группы маломощных (U ≈ 0,5 … 5 В, I ≈ 0,5..50 мА ) вторичных источников питания. Резисторные оптроны характеризуются линейностью и симметричностью исходной вольтамперной характеристики, отсутствием внутренних ЭДС, высокой кратностью отношение . Поэтому, несмотря на свою очень большую инертность и широкое развитие диодных и транзисторных оптронов, резисторные оптроны сохраняют важное самостоятельное значение. Тиристорные оптроны очень удобны в «силовой» оптоэлектронике. Они с одинаковым успехом пригодны для коммутации сильноточных цепей радиотехнического и электротехнического назначения. Управляя настолько большими мощностями в нагрузке, тиристорные оптроны за входом практически совместимы с ИМС (Значение Iвх составляет десятки миллиампер). Кроме рассмотренных разновидностей оптронов, которые распространены в промышленности, определенный интерес представляют и такие, в которых как фотоприемники используют МОН — варикапы, полевые транзисторы с диэлектрической затвором и с управляющим p-n -переходом, однопереходные транзисторы, лавинные диоды и транзисторы, диоды с барьером Шоттки.
Очень перспективными для аналоговой техники является дифференциальные оптроны, в которых один фотоизлучатель работает на два идентичных фотоприемника (Рис. 1, е). К элементарным относятся и многоканальные оптроны, которые представляют собой набор одинаковых оптронов в одном корпусе.

Применение. Оптроны с внутренним оптической связью широко применяются в различных отраслях радиотехники и электроники, вычислительной техники, автоматики, электротехники. В цифровых устройствах их используют для связи устройств, изготовленных на различной основе (например, для сопряжения биполярных ИМС с униполярными, туннельно-диодных и транзисторных схем и т.д.), их используют для управления силовыми цепями двигателей и реле постоянного и переменного токов от низковольтных маломощных логических схем; для связи логических схем с периферийным оборудованием ЭВМ; как элементы развязки от земли в источниках питания; как маломощные реле в электролюминесцентных системах отображения информации; в контрольно-измерительных устройствах,
непосредственно подключаются к сильноточным цепям переменного тока.

Оптроны, которые пригодны для передачи аналоговых сигналов, применяют как коммутирующие элементы в линиях телефонной связи; в кругах связи различных датчиков с ЭВМ; в медицинской электронике.
Оптроны с гибким световодом применяют для контроля высоковольтных линий электропередач; в измерительных системах, предназначенных для работы в условиях сильных помех (СВЧ-помехи, искрение) в устройствах управления и контроля высоковольтных электровакуумных приборов (клистронов, ЭЛТ, ЭОП, тому подобное); в технике физического эксперимента. Оптроны с открытым оптическим каналом (оптоперерывающий и отражающий оптроны) незаменимы в устройствах считывания информации с перфоносителей как индикаторы положения объектов и состояния их поверхностей в качестве датчиков вибрации, заполнения объемов жидкостью и т.д.

Оптроны (оптопары) — электронные приборы, служащие для преобразования сигнала электрического тока в световой поток. Их световой сигнал передается через каналы оптики, а также происходит обратная передача и преобразование света в электрический сигнал.

Устройство оптрона состоит из излучателя света и преобразователя светового луча (фотоприемника). В качестве излучателя в современных приборах используют светодиоды. В старых моделях применялись маленькие лампочки накаливания. Две составные части оптопары объединены общим корпусом и оптическим каналом.

Виды и устройство оптронов

Существует несколько признаков, по которым можно классифицировать оптопары по группам. При разделении на классы оптронных изделий необходимо учитывать два фактора: тип фотоприемника и особенности общей конструкции прибора.

Первый признак классификации оптронов обуславливается тем, что у всех оптопар на входе расположен светодиод, поэтому возможности функционирования определяются свойствами устройства фотоприемника. Вторым признаком является исполнение конструкции, определяющее особенности использования оптрона.

Применяя такой смешанный принцип разделения, можно выделить три группы оптронных устройств:
  • Элементарные оптопары.
  • Оптоэлектронные микросхемы.
  • Специальные оптопары.
Группы содержат в себе множество видов приборов. Для популярных оптопар применяются некоторые обозначения:
  • Д – диодная.
  • Т – транзисторная.
  • R – резисторная.
  • У – тиристорная.
  • Т 2 – со сложным фототранзистором.
  • ДТ – диодно-транзисторная.
  • 2Д (2Т) – диодная дифференциальная, либо транзисторная.
Система свойств оптронных устройств основывается на системе свойств оптопар. Эта система создается из четырех групп свойств и режимов:
  • Характеризует цепь входа оптопары.
  • Характеризует выходные параметры.
  • Объединяет степень действия излучателя на приемник света, и особенности прохода сигнала по оптопаре в качестве компонента связи.
  • Объединяет свойства гальванической развязки.

Основными оптронными параметрами считаются свойства передачи и гальванической развязки. Важной величиной транзисторных и диодных оптронов считается коэффициент передачи тока.

Показателями гальванической развязки оптронов являются:
  • Допустимое пиковое напряжение выхода и входа.
  • Допустимое наибольшее напряжение выхода и входа.
  • Сопротивление развязки.
  • Проходная емкость.
  • Допустимая наибольшая скорость изменения напряжения выхода и входа.

Первый параметр является наиболее важным. По нему определяют электрическую прочность оптрона, а также его способности применения в качестве гальванической развязки.

Эти параметры оптронов применимы и для интегральных микросхем на основе оптопар.

Обозначения оптопар на схемах

Диодные оптопары

Оптроны на диодах (рис. а) больше других устройств показывают уровень развития оптронной технологии. По значению коэффициента передачи определяют полезное действие преобразования энергии в оптопаре. Величины временных значений свойств дают возможность определить наибольшие скорости передачи информации. Соединение с диодным оптроном усилителей позволяет создать эффективные устройства передачи информации.

Транзисторные оптроны

Эти приборы (рис. с) отличаются некоторыми свойствами от других видов оптопар. Одним из таких свойств является возможность оптического управления по цепи светодиода, и по основной электрической цепи. Цепь выхода может также действовать в режиме ключа и линейном режиме.

Принцип внутреннего усиления дает возможность получения больших величин коэффициента передачи тока. Поэтому дополнительные усилители не всегда нужны. Важным моментом является небольшая инерционность оптопары, что допускается для многих режимов. Фототранзисторы имеют выходные токи намного больше, чем фотодиоды. Поэтому они применяются для коммутации различных электрических цепей. Все это достигается простой технологией транзисторных оптронов.

Тиристорные оптроны

Такие оптопары (рис. b) имеют большую перспективу для коммутации мощных силовых цепей высокого напряжения: по мощности, нагрузке, скорости они более подходящие, чем Т 2 оптопары. Оптроны марки АОУ 103 служат для применения в качестве бесконтактных выключателей в разных электронных схемах: усилителях, управляющих цепях, источниках импульсов и т.д.

Резисторные оптроны

Такие устройства (рис. d) называют фоторезисторами. Они значительно различаются от других типов оптронов своими особенностями конструкции и технологией изготовления. Основным принципом работы фоторезистора является эффект фотопроводности, то есть, изменения величины сопротивления при воздействии светового потока.

Дифференциальные

Рассмотренные выше оптопары способны передавать цифровые данные по гальванической развязке цепи. Важной проблемой является передача аналогового сигнала при помощи оптронов, то есть, создание линейности свойств передачи «вход-выход». Только при наличии таких свойств оптопар можно передавать аналоговые данные по гальванической развязке цепи без цифрового вида и импульсной передачи.

Такая задача решается диодными оптопарами, имеющими качественные шумовые и частотные характеристики. Трудность в решении этой задачи заключается в узком интервале линейности передающей характеристики и линейности диодных оптопар. Такие приборы только начинают прогрессировать в развитии, но за ними большое будущее.

Оптронные микросхемы

Эти микросхемы являются наиболее популярными классами моделей оптронных устройств, благодаря конструктивной и электрической совместимости оптронных микросхем с простыми видами, а также намного большей функциональности. Широкое применение получили коммутационные оптронные микросхемы.

Специальные оптроны

Такие образцы имеют значительные отличия от стандартных моделей приборов. Они выполнены в виде оптопар с оптическим каналом открытого вида. В устройстве таких моделей между фотоприемником и излучателем находится воздушный промежуток. Поэтому, при размещении в нем механических препятствий можно управлять светом и сигналом выхода. Оптроны с открытым каналом оптики используются вместо оптических датчиков, которые фиксируют наличие предметов, их поверхность, поворот, перемещение и т.д.

Применение оптронных устройств
  • Подобные устройства используются для передачи данных между устройствами, которые не соединены электрическими проводами.
  • Также оптопары используются для отображения и получения информации в технике. Отдельно необходимо отметить оптронные датчики, служащие для контроля объектов и процессов, отличающихся по назначению и природе.
  • Заметен прогресс оптронной функциональной микросхемотехники, которая ориентирована на решение различных задач по преобразованию и накоплению данных.
  • Полезной эффективностью стала замена больших недолговечных устройств электромеханического типа приборами оптоэлектронного принципа действия.
  • Иногда оптронные компоненты применяются в энергетике, хотя это довольно специфические решения.
Контроль электрических процессов

Мощность светового потока от светодиода и величина фототока, который образуется в линейных цепях фотоприемников, напрямую зависит от тока проводимости излучателя. Поэтому по бесконтактным оптическим каналам можно передать информацию о процессах в цепях электрического тока, связанных проводами с излучателем. Наиболее эффективным стало применение излучателей света оптопар в датчиках, электрических изменений в силовых цепях высокого напряжения. Точная информация об аналогичных изменениях имеет важность для своевременной защиты источников и потребителей электроэнергии от чрезмерных нагрузок.

Стабилизатор с контрольным оптроном

Оптроны эффективно работают в стабилизаторах высокого напряжения. В них они образуют оптические каналы обратных связей отрицательной величины. Стабилизатор, изображенный на схеме, является прибором последовательного вида. При этом элемент регулировки выполнен на биполярном транзисторе, а стабилитрон на основе кремния работает в качестве источника эталонного опорного напряжения. Компонентом сравнения является светодиод.

При возрастании выходного напряжения, повышается и проводимость светодиода. На транзистор оптрона оказывает действие фототранзистор, при этом стабилизирует напряжение на выходе.

Достоинства оптронов
  • Бесконтактное управление объектами, гибкость и разнообразие видов управления.
  • Устойчивость каналов связи к электромагнитным полям, что позволяет создать защиту от помех и взаимных наводок.
  • Создание микроэлектронных устройств с приемниками света, свойства которых могут изменяться по определенным сложным законам.
  • Увеличение перечня функций управления сигналом выхода оптронов с помощью воздействия на материал канала оптики, создание приборов и датчиков для передачи данных.
Недостатки оптронов
  • Малый КПД, вследствие двойного преобразования энергии, большой расход электроэнергии.
  • Значительная зависимость работы от температуры.
  • Большой собственный шумовой уровень.
  • Технология и конструкция недостаточно совершенны, так как применяется гибридная технология.

Такие отрицательные моменты оптронов постепенно устраняются по мере развития технологии схемотехники и создания материалов. Большая популярность оптронов вызвана, прежде всего, уникальными свойствами этих устройств.

Оптронами называются такие оптоэлектронные приборы, в которых имеются излучатели и фотоприемники, используются оптические и электрические связи, а также конструктивно созданные друг с другом элементы. Некоторые разновидности оптронов называются опто­парами, или оптоизоляторами.

Принцип действия любого оптрона основан на двойном преобразовании энергии. В из­лучателях энергия электрического сигнала преобразуется в оптическое излучение, а в фото­приемниках, наоборот, оптический сигнал вызывает электрический ток или напряжение или приводит к изменению его сопротивления.

Наибольшее распространение получили оптроны с внешними электрическими выхода­ми и выходными сигналами и внутренними оптическими сигналами (рис. 7.1). Конструкция такого опторона имеет вид, показанный на рис. 7.2.

Рис. 7.1. Структурная схема оптрона с внутренней оптической связью

Рис. 7.2. Пример конструкции диодно-диодного оптрона с внутренней оптической связью

В электрической схеме такой прибор выпол­няет функцию выходного элемента - фотопри­емника с одновременной электрической изоля­цией (гальванической развязкой) входа и выхо­да. Излучатель является источником фотонов, в качестве которого может быть использован све­тодиод или миниатюрная лампа накаливания. Оптической средой может служить воздух, стек­ло, пластмасса или волоконный световод. В каче­стве фотоприемников используются фотодиоды, фототранзисторы, фототиристоры и фоторези­сторы. Очень часто применяются интегральные фотодиодно-транзисторные структуры. Различ­ные комбинации этих элементов позволяют по­лучить весьма разнообразные входные, выход­ные и передаточные характеристики.

На практике применяется и другая разновидность оптронов: использующая внешние входные и выходные оптические сигналы и внутренние электрические сигналы (рис. 7.3). Как правило, такие приборы содержат усилители фототока.

Рис. 7.3. Оптрон с внешней оптической связью

Рис. 7.4. Оптроны, одновременно использующие оптические и электрические связи

С конструкторско-технологической точки зрения излучатель и фотоприемник являются равноправными. Эффективность преобразования энергии и срок службы оптрона в основ­ном определяются излучателем. При разработке излучателя для оптрона главная трудность заключается в оптимизации согласования с фотоприемннком. К параметрам, подлежащим оптимизации, относятся коэффициент усиления, ширина полосы частот, размеры оптиче­ского окна, электрические характеристики. Поскольку желательно иметь малое последова­тельное сопротивление, наилучшим вариантом служит излучатель на основе ваАв. Стре­мятся получить и малую величину прямого напряжения, но это менее важно, чем оптимиза­ция усиления и частотной полосы.

Требования к виду оптического окна излучателя оптрона и обычного светодиода значи­тельно отличаются друг от друга. Светодиоды изготавливают с кольцевой излучающей об­ластью площадки, чтобы получить высокий коэффициент отношения видимой излучающей области к фактической. Для оптрона излучающая область должна быть настолько малой, насколько это совместимо с допустимой плотностью тока, а контактная площадка размеща­ется так, чтобы минимально затемнить излучающую область. Это обеспечивает лучшую связь с приемником. Малый размер излучающей области позволяет уменьшить бесполезные краевые потери, как тока, так и излучения и обеспечить постоянство условий связи незави­симо от разброса величины зазора и точности совмещения с чувствительной областью фо­топриемника у различных образцов оптронов.

При выборе оптической среды ее изолирующие свойства играют определяющую роль, если расстояние между излучателем и приемником очень мало.

Если же расстояние достаточно велико, например, при использовании волоконной опти­ки, линз или другой среды (отражающей или пропускающей), изолирующие свойства стано­вятся менее важными. Зато большое значение приобретает спектр пропускания, особенно, если применяются пластмассы. В большинстве оптронов для уменьшения потерь на френе - левское отражение от поверхности излучателя и приемника используют просветляющие по­крытия. При этом одновременно создается изоляция, так как материалы покрытий не явля­ются проводниками электрического тока. Во многих типах оптронов для создания хорошей изоляции между излучателем и приемником применяют слой пленки из прозрачного фторо­пласта. Оптическая изоляция позволяет иметь прибор, обеспечивающий оптическую связь сигналов двух раздельных электронных схем, несмотря на то, что последние гальванически развязаны. Напряжение изоляции таких приборов может достигать тысяч вольт.

Принципиальные физические достоинства оптронов, как уже отмечалось выше, обу­словленные использованием фотонов в качестве носителей информации, заключаются в обеспечении очень высокой электрической изоляции входа и выхода, однонаправленности потока информации, отсутствии обратной связи с выхода на вход и широкой полосе про­пускания.

Кроме того, важными достоинствами оптронов являются:

Возможность бесконтактного (оптического) управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управления;

Невосприимчивость оптических каналов связи к воздействию электромагнитных по­лей, что в случае оптронов с протяженным оптическим каналом обусловливает высо­кую помехозащищенность, а также исключает взаимные наводки;

Возможность создания функциональных микроэлектронных устройств с фотоприем­никами, характеристики которых под действием оптического излучения изменяются по заданному (сколь угодно сложному) закону;

Расширение возможностей управления выходным сигналом оптрона путем воздейст­вия (в том числе и неэлектрического) на материал оптического канала и, как следст­вие этого, создание разнообразных датчиков и приборов для передачи информации.

Современным оптронам присуши и определенные недостатки:

Низкий кпд, обусловленный необходимостью двойного преобразования энергии (элек­тричество-излучение-электричество), и значительная потребляемая мощность;

Сильная температурная зависимость параметров;

Высокий уровень собственных шумов;

Конструктивно-технологическое несовершенство, связанное в основном с использова­нием гибридной технологии.

Перечисленные недостатки оптронов по мере совершенствования материалов, техноло­гии, схемотехники постепенно устраняются. Широкое применение оптронов определяется прежде всего уникальностью достоинств этих приборов.

1. Введение. 2

1.1. Основные определения. 2

1.2. Отличительные особенности оптронов. 2

1.3. Обобщенная структурная схема. 3

1.4. Применение. 4

1.5. История. 5

2. Физические основы оптронной техники. 6

2.1. Элементная база и устройство оптронов. 6

2.2. Физика преобразования энергии в диодном оптроне. 7

3. Параметры и характеристики оптопар и оптоэлектронных интегральных микросхем. 13

3.1. Классификация параметров изделий оптронной техники. 13

3.2. Диодные оптопары. 14

3.3. Транзисторные и тиристорные оптопары. 15

3.4. Резисторные оптопары. 15

3.5. Дифференциальные оптопары. 15

3.6. Оптоэлектронные микросхемы. 16

4. Сферы применения оптронов и оптронных микросхем. 16

4.1. Передача информации. 17

4.2. Получение и отображение информации. 18

4.3. Контроль электрических процесов. 18

4.4. Замена электромеханических изделий. 19

4.5. Энергетические функции. 19

5. Литература. 19

1. ВВЕДЕНИЕ

1.1 Основные определения.

Оптронами называют такие оптоэлектронные приборы, в которых имеются источник и приемник излучения (светоизлучатель и фотоприемник) с тем или иным видом оптической и электрической связи между ними, конструктивно связанные друг с другом.

Принцип действия оптронов любого вида основан на следующем. В излучателе энергия электрического сигнала преобразуется в световую, в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик.

Практически распространение получили лишь оптроны, у которых имеется прямая оптическая связь от излучателя к фотоприемнику и, как правило, исключены все виды электрической связи между этими элементами.

По степени сложности структурной схемы среди изделий оптронной техники выделяют две группы приборов. Оптопара (говорят также “элементарный оптрон”) представляет собой оптоэлектронный полупроводниковый прибор, состоящий из излучающего и фотоприемного элементов, между которыми имеется оптическая связь, обеспечивающая электрическую изоляцию между входом и выходом. Оптоэлектронная интегральная микросхема представляет собой микросхему, состоящую из одной или нескольких оптопар и электрически соединенных с ними одного или нескольких согласующих или усилительных устройств.

Таким образом в электронной цепи такой прибор выполняет функцию элемента связи, в котором в то же время осуществлена электрическая (гальваническая) развязка входа и выхода.

1.2 Отличительные особенности оптронов.

Достоинства этих приборов базируются на общем оптоэлектронном принципе использования электрически нейтральных фотонов для переноса информации. Основные из них следующие:

Возможность обеспечения идеальной электрической (гальванической);развязки между входом и выходом; для оптронов не существует каких-либо принципиальных физических или конструктивных ограничений по достижению сколь угодно высоких напряжений и сопротивлений развязки и сколь угодно малой проходной емкости;

Возможность реализации бесконтактного оптического управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управляющих цепей;

Однонаправленность распространения информации по оптическому каналу, отсутствие обратной реакции приемника на излучатель;

Широкая частотная полоса пропускания оптрона, отсутствие ограничения со стороны низких частот (что свойственно импульсным трансформаторам); возможность передачи по оптронной цепи как импульсного сигнала, так и постоянной составляющей;

Возможность управления выходным сигналом оптрона путем воздействия (в том числе и неэлектрического) на материал оптического канала и вытекающая отсюда возможность создания разнообразных датчиков, а также разнообразных приборов для передачи информации;

Возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых при освещении изменяются по сложному заданному закону;

Невосприимчивость оптических каналов связи к воздействию электромагнитных полей, что в случае “длинных” оптронов (с протяженным волоконно-оптическим световодом между излучателем и приемником) обусловливает их защищенность от помех и утечки информации, а также исключает взаимные наводки;

Физическая и конструктивно-технологическая совместимость с другими полупроводниковыми и микроэлектронными приборами.

Оптронам присущи и определенные недостатки:

Значительная потребляемая мощность, обусловленная необходимостью двойного преобразования энергии (электричество - свет - электричество) и невысокими КПД этих переходов;

Повышенная чувствительность параметров и характеристик к воздействию повышенной температуры и проникающей ядерной радиации;

Более или менее заметная временная деградация (ухудшение) параметров;

Относительно высокий уровень собственных шумов, обусловленный, как и два предыдущих недостатка, особенностями физики светодиодов;

Сложность реализации обратных связей, вызванная электрической разобщенностью входной и выходной цепей;

Конструктивно-технологическое несовершенство, связанное с использованием гибридной непланарной технологии, (с необходимостью объединения в одном приборе нескольких - отдельных кристаллов из различных полупроводников, располагаемых в разных плоскостях).

Перечисленные недостатки оптронов по мере совершенствования материалов, технологии, схемотехники частично устраняются, но тем не менее еще длительное время будут носить достаточно принципиальный характер. Однако их достоинства столь высоки, что обеспечивают уверенную внеконкурентность оптронов среди других приборов микроэлектроники.

1.3 Обобщенная структурная схема (рис. 1.1).

Рис 1.1. Обобщенная структурная схема оптрона.

Как элемент связи оптрон характеризуется коэффициентом передачи К i , определяемым отношением выходного и входного сигналов, и максимальной скоростью передачи информации F . Практически вместо F измеряют длительности нарастания и спада передаваемых импульсов t нар (сп) или граничную частоту. Возможности оптрона как элемента гальванической развязки характеризуются максимальным напряжением и сопротивлением развязки U разв и R разв и проходной емкостью C разв .

В структурой схеме рис. 1.1 входное устройство служит для оптимизации рабочего режима излучателя (например, смещения светодиода на линейный участок ватт-амперной характеристики) и преобразования (усиления) внешнего сигнала. Входной блок должен обладать высоким КПД преобразования, высоким быстродействием, широким динамическим диапазоном допустимых входных токов (для линейных систем), малым значением “порогового” входного тока, при котором обеспечивается надежная передача информации по цепи.

Назначение оптической среды - передача энергии оптического сигнала от излучателя к фотоприемнику, а также во многих случаях обеспечение механической целостности конструкции.

Принципиальная возможность управления оптическими свойствами среды, например с помощью использования электрооптических или магнитооптических эффектов, отражена введением в схему устройства управления, В этом случае мы получаем оптрон с управляемым

оптическим каналом, функционально отличающийся от “обычного” оптрона: изменение выходного сигнала может осуществляться как по входу, так и по цепи управления.

В фотоприемнике происходит “восстановление” информационного сигнала из оптического в электрический; при этом стремятся иметь высокую чувствительность и высокое быстродействие.

Наконец, выходное устройство призвано преобразовать сигнал фотоприемника в стандартную форму, удобную для воздействия на последующие за оптроном каскады. Практически обязательной функцией выходного устройства является усиление сигнала, так как потери после двойного пpeобразования очень значительны. Нередко функцию усиления выполняет и сам фотоприемник (например, фототранзистор).

Общая структурная схема рис. 1.1 реализуется в каждом конкретном приборе лишь частью блоков. В соответствии с этим выделяют три основные группы приборов оптронной техники; ранее названные оптопары (элементарные оптроны), использующие блоки светоизлучатель - оптическая среда - фотоприемник; оптоэлектронные (оптронные) микросхемы (оптопары с добавлением выходного, а иногда и входного устройства); специальные виды оптронов - приборы, функционально и конструктивно существенно отличающиеся от элементарных оптронов и оптоэлектронных ИС

Реальный оптрон может быть устроен и сложнее, чем схема на рис. 1.1; каждый из указанных блоков может включать в себя не один, а несколько одинаковых или подобных друг другу элементов, связанных электрически и оптически, однако это не изменяет существенно основ физики и электроники оптрона.

1.4 Применение.

В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок; и т.д.

Другая важнейшая область применения оптронов - оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, триаков, симисторов, управление электромеханическими релейными устройствами

Что такое оптопара

Оптрон - оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса. Принцип действия оптрона базируется на том, что подаваемый на него электрический сигнал вызывает свечение на передающей стороне, и уже в форме света сигнал принимается фотоприемником, инициируя электрический сигнал на приемной стороне. То есть сигнал передается и принимается посредством оптической связи внутри электронного компонента.

Оптопара - наиболее простая разновидность оптрона. Она состоит только из излучающей и принимающей частей. Более сложная разновидность оптрона - оптоэлектронная микросхема, внутри которой содержится несколько оптопар, сопряженных с одним либо несколькими согласующими или усилительными устройствами.

Таким образом, оптопара представляет собой электронный компонент, обеспечивающий оптическую передачу сигнала в цепи без гальванической связи между источником сигнала и его приемником, поскольку фотоны, как известно, электрически нейтральны.

Структура и характеристики оптопар

В оптопарах применяются фотоприемники, чувствительные в ближней инфракрасной и видимой областях, поскольку именно для данной части спектра характерны источники интенсивного излучения, могущие работать в качестве фотоприемников без охлаждения. Фотоприемники с р-n-переходами (диоды и транзисторы) на основе кремния универсальны, область их максимальной спектральной чувствительности находится вблизи 0,8 мкм.

Оптопара характеризуется в первую очередь коэффициентом передачи по току CTR, то есть отношением токов входного и выходного сигналов. Следующий параметр - скорость передачи сигнала, по сути - граничная частота fc работы оптопары, связанная с временами фронта tr и среза tf для передаваемых импульсов. Наконец, параметры, характеризующие оптопару с точки зрения гальванической развязки: сопротивление развязки Riso, максимальное напряжение Viso и проходная емкость Cf.

Входное устройство, входящее в структуру оптрона, предназначено для создания оптимальных условий работы излучателя (светодиода), для смещения рабочей точки в линейную зону ВАХ.

Входное устройство обладает достаточным быстродействием и широким диапазоном входных токов, обеспечивая надежность передачи информации даже при малом (пороговом) токе. Оптическая среда находится внутри корпуса, через нее передается свет от излучателя к фотоприемнику.

В оптронах с управляемым оптическим каналом имеется дополнительное устройство управления, через которое можно с помощью электрических или магнитных средств влиять на свойства оптической среды. На стороне фотоприемника сигнал восстанавливается, с высоким быстродействием преобразуясь из оптического в электрический.

Выходное устройство на стороне фотоприемника (например включенный в схему фототранзистор) призван преобразовать сигнал в стандартную электрическую форму, удобную для дальнейшей обработки в следующих за оптроном блоках. Оптопара зачастую не содержит входных и выходных устройств, поэтому ей требуются внешние цепи для создания нормального режима работы в схеме того или иного прибора.

Применение оптопар

Оптопары находят широкое применение блоков различной аппаратуры, где есть низковольтные и высоковольтные цепи, цепи управления развязываются от силовых цепей: управление мощными симисторами и тиристорами, схемами реле и т. д.

В радиотехнических схемах модуляции и автоматической регулировки усиления используются диодные, транзисторные и резисторные оптроны. Через воздействие по оптическому каналу схема бесконтактно регулируется и выводится на оптимальный рабочий режим.

Оптопары настолько универсальны, что даже просто в качестве элементов гальванической развязки и бесконтактного управления применяются в настолько разнообразных отраслях и в таком количестве уникальных функций, что все и не перечислить.

Вот лишь некоторые из них: вычислительная техника, техника связи, автоматика, радиоаппаратура, системы автоматизированного управления, измерительные приборы, системы контроля и регулирования, медицинская техника, устройства визуального отображения информации и многое многое другое.

Достоинства оптопар

Применение оптопар на печатных платах позволяет добиться идеальной гальванической развязки, когда требования к изоляции высоковольтных и низковольтных, входных и выходных цепей по сопротивлению чрезвычайно высоки. Напряжение между цепями передатчика и приемника популярной оптопары PC817 составляет, например, 5000 В. Кроме того с помощью оптической развязки достигается чрезвычайно малая проходная емкость, порядка 1 пф.

При помощи оптопар очень просто реализуется бесконтактное управление, при этом сохраняется простор для уникальных конструкторских решений касательно непосредственно управляющих цепей. Немаловажно здесь и то, что совершенно отсутствует реакция приемника на источник, то есть информация передается однонаправленно.

Широчайшая полоса пропускания оптопары исключает ограничения накладываемые низкими частотами: при помощи света можно передавать хоть постоянный сигнал, хоть импульсный, причем с очень крутыми фронтами, что принципиально невозможно осуществить при помощи импульсных трансформаторов. Канал связи внутри оптопары абсолютно невосприимчив к воздействию электромагнитных полей, поэтому сигнал защищен от помех и наводок. Наконец, оптопары полностью совместимы с прочими электронными компонентами.