Электронное управление частотой rc генератора схема. Автогенераторы типа rс

В данной статье мы рассмотрим RC генератор и принцип его работы, подробно рассмотрим его схемы, в том числе на операционном усилителе.

Описание и принцип работы

В руководствах по усилителю мы видели, что одноступенчатый транзисторный усилитель может генерировать 180 o фазового сдвига между его выходным и входным сигналами при подключении в конфигурации типа класса А.

Чтобы генератор мог бесконечно выдерживать колебания, должна быть обеспечена достаточная обратная связь правильной фазы, то есть «положительная обратная связь», а транзисторный усилитель используется в качестве инвертирующего каскада для достижения этой цели.

В цепи RC-генератора вход смещен на 180 o через ступень усилителя и на 180 o снова через вторую инвертирующую ступень, что дает нам «180 o + 180 o = 360 o » фазового сдвига, который фактически равен 0 o , тем самым давая нам требуемый положительный отзыв. Другими словами, фазовый сдвиг контура обратной связи должен быть равен «0».

В генераторе сопротивления-емкости или просто в генераторе RC мы используем тот факт, что фазовый сдвиг происходит между входом в сеть RC и выходом из той же сети, например, с использованием элементов RC в ветви обратной связи.

Фазовая цепь RC

Схема слева показывает одну сеть резистор-конденсатор, выходное напряжение которой «опережает» входное напряжение на угол менее 90 o . Идеальная однополюсная RC-цепь будет производить фазовый сдвиг точно на 90 o , а поскольку для колебаний требуется 180 o фазового сдвига, в конструкции RC-генератора необходимо использовать как минимум два однополюсных.

Однако в действительности трудно получить ровно 90 o фазового сдвига, поэтому используется больше стадий. Величина фактического фазового сдвига в цепи зависит от значений резистора и конденсатора, а выбранная частота колебаний с фазовым углом (Φ) задается как:


Где: X C — емкостное сопротивление конденсатора, R — сопротивление резистора, а ƒ — частота.

В нашем простом примере выше значения R и C были выбраны таким образом, чтобы на требуемой частоте выходное напряжение опережало входное напряжение под углом около 60 o . Затем фазовый угол между каждым последующим участком RC увеличивается еще на 60 o, давая разность фаз между входом и выходом 180 o (3 x 60 o), как показано на следующей векторной диаграмме.

Затем, соединяя вместе три такие RC-сети последовательно, мы можем произвести полный фазовый сдвиг в цепи 180 o на выбранной частоте, и это образует основы «генератора фазового сдвига», иначе называемого RC-генератором .

Мы знаем, что в схеме усилителя, использующей биполярный транзистор или операционный усилитель, он будет производить сдвиг фазы на 180 o между своим входом и выходом. Если трехступенчатая RC-сеть с фазовым сдвигом подключена между этим входом и выходом усилителя, общий фазовый сдвиг, необходимый для регенеративной обратной связи, составит 3 x 60 o + 180 o = 360 o , как показано ниже.

Три каскада RC каскадно соединены, чтобы получить необходимый наклон для стабильной частоты колебаний. Сдвиг фазы контура обратной связи составляет -180 o , когда фазовый сдвиг каждой ступени составляет -60 o . Это происходит, когда ω = 2πƒ = 1.732 / RC (tan 60 o = 1.732). Затем для достижения требуемого фазового сдвига в цепи генератора RC необходимо использовать несколько RC-фазосдвигающих сетей, таких как схема ниже.

Основная схема генератора RC

Базовый RC генератор, также известный как генератор фазового сдвига , генерирует выходной синусоидальный сигнал, используя регенеративную обратную связь, полученную из комбинации резистор-конденсатор. Эта регенеративная обратная связь от RC- сети обусловлена ​​способностью конденсатора накапливать электрический заряд (аналогично схеме LC-бака).

Эта сеть обратной связи резистор-конденсатор может быть подключена, как показано выше, для создания начального фазового сдвига (сеть с фазовым переходом) или взаимозаменяться для создания запаздывающего фазового сдвига (сеть с фазовым запаздыванием), результат остается тем же, что и синусоидальные колебания, которые возникают только при частота, на которой общий фазовый сдвиг составляет 360 o .

Изменяя один или несколько резисторов или конденсаторов в сети с фазовым сдвигом, можно изменять частоту, и, как правило, это делается путем поддержания одинаковых резисторов и использования 3-х значного переменного конденсатора.

Если все резисторы R и конденсаторы C в сети фазового сдвига равны по величине, то частота колебаний, создаваемых RC-генератором, определяется как:


Где:
ƒ r — выходная частота в герцах
R — сопротивление в омах
C — емкость в Фарадах
N — количество стадий RC, (N = 3)

Поскольку комбинация резистор-конденсатор в цепи RC-генератора также действует как аттенюатор, создавая полное затухание -1 / 29th (Vo / Vi = β) на всех трех ступенях, усиление напряжения усилителя должно быть достаточно высоким, чтобы преодолеть эти потери RC. Следовательно, в нашей трехступенчатой ​​RC-сети, приведенной выше, усиление усилителя тоже должно быть равно или больше 29.

Влияние нагрузки усилителя на сеть обратной связи влияет на частоту колебаний и может привести к тому, что частота генератора будет на 25% выше расчетной. Затем сеть обратной связи должна управляться от выходного источника с высоким импедансом и подаваться на нагрузку с низким импедансом, такую ​​как транзисторный усилитель с общим эмиттером, но лучше использовать операционный усилитель, поскольку он полностью удовлетворяет этим условиям.

Операционный усилитель RC генератора

При использовании в качестве RC-генераторов RC-генераторы с операционным усилителем встречаются чаще, чем их аналоги на биполярных транзисторах. Цепь генератора состоит из операционного усилителя с отрицательным усилением и трехсекционной RC- сети, которая генерирует сдвиг фазы на 180 o . Сеть с фазовым сдвигом подключается от выхода операционного усилителя обратно к его «инвертирующему» входу, как показано ниже.

Поскольку обратная связь подключена к инвертирующему входу, операционный усилитель, следовательно, подключен в своей конфигурации «инвертирующего усилителя», которая создает требуемый сдвиг фазы на 180 o, тогда как сеть RC производит другой сдвиг фазы на 180 o на требуемой частоте (180 o + 180 о).

Хотя возможно обеспечить каскадное соединение только двух однополюсных RC-каскадов, чтобы обеспечить требуемый сдвиг фазы на 180 o (90 o + 90 o), стабильность генератора на низких частотах обычно плохая.

Одной из наиболее важных особенностей RC-генератора является его стабильность частоты, которая заключается в его способности обеспечивать выходной синусоидальный сигнал постоянной частоты при различных условиях нагрузки. При каскадном соединении трех или даже четырех каскадов RC (4 x 45 o) стабильность генератора может быть значительно улучшена.

Обычно используются RC-генераторы с четырьмя каскадами, потому что общедоступные операционные усилители поставляются в четырехслойных интегральных схемах, поэтому проектирование четырехступенчатого генератора с фазовым сдвигом 45 o относительно друг друга относительно легкое.

RC-генераторы стабильны и обеспечивают хорошо сформированный синусоидальный выход с частотой, пропорциональной 1 / RC , и, следовательно, более широкий диапазон частот возможен при использовании переменного конденсатора. Однако RC-генераторы ограничены частотными приложениями из-за ограничений полосы пропускания для получения желаемого сдвига фазы на высоких частотах.

В следующем уроке об Осцилляторах мы рассмотрим другой тип RC-генератора, называемый мостовыми осцилляторами Wien, который использует резисторы и конденсаторы в качестве контура для создания низкочастотного синусоидального сигнала.

Генераторы синусоидальных колебаний выполняют с колебательным LC-контуром и частотно-зависимыми RC-цепями. LC-генераторы предназначены для генерирования сигналов высокой частоты (свыше нескольких десятков килогерц), а RC-генераторы используются на низких частотах (вплоть до единиц герц).

Генераторы LC-типа основаны на использовании избирательных LC-усилителей, обладающих узкой полосой пропускания. Условия для генерирования синусоидальных колебаний (8.1) и (8.2) создаются для частоты настройки f 0 колебательного контура, когда его сопротивление является чисто активным. Предпосылкой выполнения соотношения (8.1) для частоты f 0 служит изменение фазового сдвига j у , вносимого усилителем при отклонении частоты от резонансной, так как сопротивление резонансного контура перестает быть активным и приобретает реактивный (индуктивный или емкостный) характер. Справедливость соотношения (38) для резонансной частоты обусловливается максимальным значением коэффициента усиления на частоте f 0 .

Схемная реализация LC-генераторов достаточно разнообразна. Они могут отличаться способами включения в усилитель колебательного LC-контура и создания положительной обратной связи. Одна из схем LC-генераторов приведена на рис. 8.2.

Усилительный каскад выполнен на транзисторе VT , включенном по схеме ОЭ. Элементы R1, R2, R э, С э предназначены для задания режима покоя и температурной стабилизации. Выходной сигнал снимается с коллектора транзистора через разделительный конденсатор С р2 .

Параметрами колебательного контура являются емкость конденсатора С и индуктивность первичной обмотки w 1 трансформатора. Сигнал обратной связи снимается с вторичной обмотки w 2 , индуктивно связанной с обмоткой w 1 , и через разделительный конденсатор С р1 подается на вход транзистора. Необходимая фазировка напряжения обратной связи достигается соответственным подключением концов вторичной обмотки. Соотношение чисел витков первичной и вторичной обмоток w 1 /w 2 >1.

Если принять индуктивную связь М обмоток w 1 и w 2 идеальной, то для обеспечения баланса амплитуд необходимо, чтобы коэффициент передачи тока транзистора β в точке покоя удовлетворял соотношению β ≥ w 1 /w 2 .

Частота f генерируемых колебаний близка к резонансной частоте колебательного контура

Зависимость параметров L и С и параметров транзистора от температуры приводит к температурной зависимости частоты f . В условиях постоянства температуры нестабильность частоты вызвана изменением дифференциальных параметров транзистора от изменения положения точки покоя усилительного каскада.

Нестабильность частоты генераторов оценивают коэффициентом относительной нестабильности d f = Df/f * 100 %, где Df – абсолютное отклонение частоты от номинального значения f . Коэффициент относительной нестабильности частоты транзисторных LC-генераторов без принятия специальных добавочных мер стабилизации составляет единицы процента. Наибольшая стабильность частоты с коэффициентом d f = (10 -3 ¸ 10 -5) % достигается при использовании в генераторах кварцевого резонатора.

Генераторы LC-типа реализуют в виде гибридных интегральных микросхем, в которых реактивные элементы L и C применяют в качестве навесных.

Генераторы на частоты ниже нескольких десятков килогерц строят с помощью частотно-зависимых RC-цепей. В качестве усилительного звена обычно используют операционные усилители в интегральном исполнении. Схемы генераторов на ОУ приведены на рис. 8.3.

Принцип работы простейшего RC-генератора синусоидальных колебаний (рис. 8.3, а) заключается в том, что на определенной частоте фазовый сдвиг трех звеньев RC-цепи составляет j w = 180° .


Если такую цепь включить между выходом и инвертирующим входом ОУ, то общий фазовый сдвиг будет равен 360°, т.е. образуется положительная обратная связь. Частоту f 0 , при которой угол j w = 180 °, называют квазирезонансной. С параметрами R и C (R1 = R2 = R3||R 0 = R , C1 = C2 = C3 = C ) она связана соотношением

Такая цепочка ослабляет сигнал в 29 раз, поэтому для создания устойчивых колебаний необходимо, чтобы усилитель имел коэффициент усиления К ≥ 29. Тогда будет выполняться условие баланса амплитуд |Ќ||ẁ| ≥ 1 . Эту задачу решают выбором сопротивлений резисторов R 0 и R ос (К = R ос /R 0 ≥ 29 ).

Из RC-цепей, не осуществляющих сдвига по фазе передаваемого сигнала на квазирезонансной частоте, наибольшее распространение получила схема моста Вина. Схема генератора синусоидальных колебаний на ОУ с мостом Вина показана на рис. 8.3, б. Звено частотно-зависимой обратной связи C1 , R1 , C2 , R2 (мост Вина) включено между выходом и прямым входом ОУ. Элементы R 0 и R ос предназначены для получения требуемого коэффициента усиления усилительного звена.

На частоте генерации f 0 коэффициент передачи моста Вина w = 1/3, поэтому самовозбуждение генератора возможно при К > 3. Для неинвертирующего усилителя, который применяется в данной схеме, это соответствует выбору R ос /R 0 ≥ 3.

Применение генераторов с колебательными контурами для генерирования колебаний низких частот (ниже 10 кГц) затруднено из-за значительно увеличивающихся номиналов катушек индуктивности и конденсаторов, что влечет за собой увеличение размеров и стоимости генератора.

Поэтому в настоящее время для генерирования низких и инфранизких частот широко используются RC-генераторы, в которых вместо колебательного контура используются RC-фильтры.

RC-генераторы, работая в сравнительно широком диапазоне частот от долей герца до нескольких мегагерц, обеспечивают достаточную стабильность колебаний и имеют малые габариты и массу.

Применение полевых транзисторов в схемах RC-генераторов выгодно отличает их от биполярных транзисторов возможностью использования в цепи положительной обратной связи высокоомных резисторов, что в свою очередь позволяет использовать конденсаторы с меньшими номиналами, обладающие большей стабильностью.

Простейшие RC-генераторы на изображены на рис. 1. Как известно, условия возбуждения генератора требуют, чтобы цепь обратной связи изменяла на 180° (для однокаскадного генератора) фазу сигнала, поступающего со стоковой нагрузки в цепь затвора.

В схеме генератора, приведенной на рис. 1, а, это достигается выполнением цепи обратной связи из нескольких последовательно включенных простых RC-звеньев. Кроме того, ослабление сигнала при прохождении цепи обратной связи должно компенсироваться усилением каскада.

Для цепей с одинаковыми по значению элементами R и С условие баланса фаз на генерируемой частоте f 0 выполняется при следующих соотношениях :

для трёхзвенных f 0 =0,065/RC;

для четырёхзвенных f 0 =0,133/RC

Рис. 1. Схемы простейших RC-генераторов.

а - с фазирующей RC-цепочкой; б - с истоковым повторителем; в - с Т-образным RC-мостом.

Для трёхзвенной RC-цепи обратной связи требуемый коэффициент усиления каскада должен быть больше 29 , а в четырёхзвенной RC-цепи не менее 18,4.

Для повышения устойчивости работы генератора (из-за шунтирующего действия цепью обратной связи резистора нагрузки Rc) часто вводят дополнительный каскад - истоковый повторитель (рис. 1, б), имеющий высокое входное сопротивление.

Схема генератора с двойным Т-образным RC-фильтром (рис. 1, в), элементы которого выбраны следующим образом: С1=С2=С; С3=С/0,207; R1=R2=R; R3=0,207R - функционирует при условии, если коэффициент усиления каскада не менее 11. При этом частота колебаний

Рассмотренные простейшие RC-генераторы на ПТ не нашли широкого применения из-за присущих им недостатков.

Первый недостаток - это необходимость получения большого коэффициента усиления каскада, который у генератора с трёхзвенной цепью обратной связи должен быть не менее 29, Практическая реализация такого коэффициента усиления затруднительна из-за малого значения крутизны ПТ. Если учесть, что для улучшения формы генерируемых колебаний вводится отрицательная обратная связь, то коэффициент усиления каскада должен быть еще больше.

Второй недостаток - невозможность перестройки в широком диапазоне частот генераторов, выполненных по схеме с RC-цепочка-ми и Т-образным мостом в цепи обратной связи.

ГЕНЕРАТОРЫ, ПЕРЕСТРАИВАЕМЫЕ В ШИРОКОМ ДИАПАЗОНЕ ЧАСТОТ

Наиболее широкое применение среди RC-генераторов нашла схема с фазовым RC-мостом (генератор на мосте Вина), принципиальная схема которого изображена на рис. 2. К достоинствам подобной схемы следует отнести малое затухание и нулевой сдвиг фаз в цепи обратной связи на частоте генерации.

Таким образом, при включении фазового RC-моста для выполнения условия баланса фаз необходимо, чтобы усилитель генератора обеспечивал сдвиг фаз 360°.

Частота генерации при равенстве R1=R2=R и С1=С2=С определяется выражением

f 0 =1/2RCπ (1)

На этой частоте затухание фазового RС-моста минимально и равно 3. (Затухание β - величина ослабления, которое вносит фазовый RC-мост в проходящий сигнал в зависимости от расстройки Δf - определяется по выражению β=(9+(2Δf) 2 /f 0) 1/2) Отсюда следует, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, должно быть не менее 3. Благодаря малому значению требуемого усиления появляется возможность введения глубокой отрицательной обратной связи, что ведет к уменьшению уровня нелинейных искажений при работе в широком диапазоне частот.

В схеме рис. 2, а отрицательная обратная связь осуществляется за счет резистора в цепи истока транзистора T1 и введения цепочки R5C3. В качестве резистора R5 использовался малоинерционный термистор ТВД-4, резисторы R1, R2 - типа ПТМН, а конденсаторы С1 и С2 - типа КСО-Г. При указанных на схеме номиналах частота генерации f 0 =1500 Гц. При изменении температуры в диапазоне от 10 до 50° С была получена относительная нестабильность частоты

Δf/f=0,05% на 10° С.

Фазовый RC-мост имеет в своем составе всего по два одноименных элемента; следовательно, его можно перестраивать в широком диапазоне частот, изменяя значение только двух элементов R1, R2 или С1, С2), что делает перестройку генераторов с такими мостами конструктивно удобной.

На рис. 2, б приведена схема перестраиваемого генератора низкой частоты с фазовым RC-мостом. Частота генерируемых колебаний плавно перестраивается с помощью сдвоенного потенциометра R2, R3. Усилитель генератора двухкаскадный с непосредственной связью. Для стабилизации амплитуды колебаний генератора и его режима работы введена глубокая отрицательная обратная связь как по постоянному, так и переменному току (цепочка R8, R6, R5) Для перекрытия всего звукового диапазона следует ввести переключатель, который одновременно изменял бы емкости конденсаторов RC и С2 в обоих плечах моста.

Рис. 2. Принципиальные схемы генераторов с фазовым RС-мостом.

а - с двухкаскадным усилителем и ёмкостной связью; б - с двухкаскадным усилителем и непосредственной связью.

Рис. 3. Генератор, перестраиваемый в широком диапазоне

а - принципиальная схема; б - структурная схема.

Более сложная схема RС-генератора с использованием полевых транзисторов, позволяющая перестраивать частоту в декадном диапазоне, изображена на рис. 3. Для параметров, указанных на схеме, частота генератора лежит в диапазоне 500 кГц - 5 мГц; однако, изменив ёмкости конденсаторов, можно получить частоты в других диапазонах .

Два фазовращателя, фазоинвертор, усилитель и аттенюатор соединяются таким образом, что образуют петлю обратной связи. Схема будет генерировать колебания с частотой, при которой полный фазовый сдвиг составляет 360°. На этой частоте каждый из двух идентичных фазовращателей обеспечивает фазовый сдвиг на 90°.

Управляемый напряжением фазовращатель состоит из конденсатора C1 и транзистора Т2.

Транзисторы Т3, Т4 и конденсатор С3 образуют второй фазовращатель, который работает аналогично первому. Благодаря высокому сопротивлению фазовращателей отпадает необходимость в буферных каскадах. Затворы транзисторов Т2 и Т4 заземлены по переменному току и, следовательно, могут быть соединены. Транзистор Т5 предназначен для усиления сигнала.

Транзистор Т7 и резистор R6 образуют управляемый напряжением аттенюатор, при этом транзистор Т7 используется в качестве управляемого резистора.

Амплитудный детектор состоит из усилителя на транзисторе Т6, диодного детектора Д1 и фильтра R5C5. Когда амплитуда входного сигнала увеличивается, напряжение на затворе транзистора Т7 становится более отрицательным, при этом возрастает динамическое сопротивление транзистора и уменьшается коэффициент усиления в петле обратной связи.

СТАБИЛИЗАЦИЯ АМПЛИТУДЫ КОЛЕБАНИЙ

Свойство полевого транзистора изменять сопротивление канала в зависимости от приложенного к затвору управляющего напряжения нашло достаточно широкое применение в генераторах для автоматической стабилизации уровня выходного сигнала.

На рис. 4, а приведена схема RC-генератора синусоидальных колебаний с регулируемой отрицательной обратной связью . Двухкаскадный усилитель на полевых транзисторах Т1 и Т3 охвачен положительной обратной связью через элементы R1-R4, С1, С3. Отрицательная обратная связь осуществляется через делитель, состоящий из резистора R6 и управляемого сопротивления канала полевого транзистора Т2 Установление стационарной амплитуды происходит за счет воздействия UВых (через детектор Д1 и его элементов R7, С5) на глубину отрицательной обратной связи и на режим питания транзистора Т1. Инерционность АРУ определяется в основном ёмкостью конденсатора С5 и сопротивлением резистора R7 . Такая автоматически регулируемая отрицательная обратная связь позволяет повысить стабильность характеристик генератора по сравнению с обычной схемой при изменении напряжений питания и температуры окружающей среды. При изменении питания от 18 до 10 В амплитуда выходного сигнала снижалась на 8%.

Рис. 4. Генераторы со стабилизацией амплитуды генерируемых колебаний.

а - RС-генератор с регулируемой ООС; б - LC-генератор с аттенюатором на ПТ.

Несколько иначе осуществляется автоматическая стабилизация уровня выходного сигнала генератора, принципиальная схема которого изображена на рис. 4, б . Напряжение сток - исток полевого транзистора Т1 регулируется переменным резистором R3, установленным в цепи затвора второго транзистора Т2. Часть выходного напряжения через трансформатор L1, L2 поступает на выпрямитель Д1 и фильтр R3C7. В зависимости от положения потенциометра R3 изменяется рабочая точка полевого транзистора, изменяется сопротивление его канала и соответственно амплитуда сигнала на выходе генератора. Потенциометром R3 устанавливают необходимую амплитуду выходного напряжения, которая в дальнейшем автоматически поддерживается на заданном уровне.

Как видно из приведённых выше примеров, использование полевых транзисторов в схемах автоматической стабилизации выходного напряжения генераторов позволяет значительно упростить подобные схемы и уменьшить необходимую мощность управления регулируемого элемента.

ЧМ ГЕНЕРАТОРЫ

В автоматике и телемеханике, измерительной технике возникает необходимость в широкополосной частотной модуляции при низкой несущей частоте. Так, например, в радиотелеметрии с частотным разделением каналов каждому- каналу отводится своя поднесущая частота. Генераторы поднесущих частот - это низкочастотные генераторы, частоты которых промодулированы сигналами от датчиков. Применение LC-генераторов в таких системах нежелательно из-за громоздкости выполнения в низкочастотном диапазоне. Поэтому в качестве задающего частотно-модулированного генератора поднесущей частоты используется RС-генератор.

Частота RС-генератора, как уже говорилось выше, определяется параметрами фазирующей RС-цепочки, изменяя которые определенным образом, осуществляют частотную модуляцию колебаний генератора. Для получения линейной модуляционной характеристики необходимо, чтобы одновременно по линейному закону изменялись отношения 1/R или 1/С фазирующей цепочки.

Рис. 5. ЧМ генератор на ПТ, а - принципиальная схема; б - модуляционная характеристика.

В качестве перестраиваемых напряжением ёмкостей применяются полупроводниковые диоды и транзисторы, используя зависимость ёмкости p-n перехода от обратного напряжения. Существенным недостатком подобного способа является большая нелинейность модуляционной характеристики ЧМ генератора из-за нелинейного изменения ёмкости от приложенного напряжения.

Полупроводниковые диоды и биполярные транзисторы можно использовать и в качестве переменных сопротивлений. Однако такому способу получения ЧМ свойственны следующие недостатки : нелинейность модуляционной характеристики при больших девиациях частоты; большая амплитудная модуляция; плохая развязка источника модулирующего сигнала и автогенератора; значительная мощность, потребляемая управляющей цепью.

Перечисленных недостатков лишен способ осуществления ЧМ с помощью полевых транзисторов. Применение ПТ в качестве переменных сопротивлений в фазирующей цепи RС-генератора позволяет реализовать их важное достоинство - линейную зависимость проводимости канала от управляющего напряжения и высокое входное сопротивление частотного модулятора.

На рис. 5 изображена принципиальная схема ЧМ генератора с фазовым RС-мостом и его модуляционная характеристика для ПТ (Т{Г2) типа КП103Ж и КП103М, используемых в качестве переменных резисторов.

Резисторы R1 и R2 включены для уменьшения глубины девиации до необходимой; кроме того, используя резисторы с отрицательным ТКС, можно уменьшить влияние температурных изменений сопротивления канала ПТ на стабильность частоты генератора. С помощью источника смещения Eсм устанавливают необходимое значение сопротивления каналов ПТ при управляющем (модулирующем) сигнале UBX=0.

МУЛЬТИВИБРАТОРЫ

Релаксационные генераторы низких частот имеют большую постоянную времени. В мультивибраторах, выполненных на биполярных транзисторах, для получения большой постоянной времени используются электролитические конденсаторы с большой ёмкостью, обладающие невысокой стабильностью. Высокое же входное сопротивление полевых транзисторов позволяет получать необходимую постоянную времени в релаксационных схемах без использования конденсаторов с большой ёмкостью. Поэтому в тех случаях, когда требуется реализовать постоянные времени примерно несколько секунд или минут, целесообразно использовать полевые транзисторы.

В схеме, изображенной на рис. 6, а, два полевых транзистора включены по схеме истоковых повторителей, а два биполярных транзистора являются переключателями. Принцип работы схемы аналогичен принципу работы обычного мультивибратора, причём комбинацию биполярного и полевого транзистора следует рассматривать как некоторый активный элемент. Таким образом, в схему вносится высокое входное сопротивление полевых транзисторов и одновременно обеспечивается большое полное усиление. Биполярные транзисторы не входят в состояние насыщения, так как напряжение их коллекторов питает стоки полевых транзисторов. В результате такого соединения мультивибратор устойчиво самовозбуждается; поскольку рабочие точки транзисторов смещены в линейную область, любое изменение входного тока вызывает изменение коллекторного напряжения. Эта схема хорошо работает и на высоких частотах.

Рис. 6. Схемы мультивибраторов на ПТ.

а - с ненасыщенными биполярными транзисторами; б - с насыщенными биполярными транзисторами.

Длительность пребывания мультивибратора в каждом из состояний определяется разрядом конденсатора С1 или С2 через резистор цепи затвора. Когда напряжение достигает значения, равного напряжению отсечки полевого транзистора, изменение тока истока заставляет схему перейти в другое состояние. Если ёмкость каждого конденсатора С1 и С2 равна 4 мкФ, то, изменяя R1 и R2 в сторону увеличения, можно повысить длительность периода мультивибратора от 8 мс до 6 мин. Если ёмкость каждого из конденсаторов выбрать равной 100 пФ, то частоту можно изменить от 100 Гц до 3 мГц

Несколько иначе выполнен мультивибратор, схема которого изображена на рис. 6, б . Рассмотрим принцип действия этой схемы. Допустим, что транзистор Т1 переходит в состояние насыщения, тогда на затворе Т4 появляется положительный потенциал и транзисторы Т4 и Т2 закрываются. Скачок напряжения на коллекторе Т2 приводит к надежному открыванию транзисторов Т1 и Т3. Ток смещения, текущий к затвору Т3 через резистор R2, поддерживает его в этом состоянии. Конденсатор С1 разряжаясь через резистор уменьшает напряжение смещения на затворе Т4. Когда напряжение Uзи транзистора Т4 уменьшается до напряжения отсечки, транзисторы Т4 и Т2 начинают проводить и быстро открываются, в то время как Т1 и Т3 закрываются. Длительность импульса мультивибратора определяется по формуле

(2)

где Ес - напряжение источника питания.

При номиналах деталей, указанных на схеме рис. 8, б, получена длительность импульса примерно 25 с.

ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ

Используя источник неизменного тока на полевом транзисторе в генераторе пилообразного напряжения, можно получить пилу, линейность и наклон которой почти не зависят от случайных изменений управляющего напряжения. Кроме того, полевые транзисторы позволяют реализовать схемы генераторов развертки с такими значениями линейности и длительности, которых трудно достигнуть при использовании биполярных транзисторов.

Генератор пилообразного напряжения, изображенный на рис. 7, состоит из источника постоянного тока на полевом транзисторе T1, конденсатора переменной ёмкости С1 и однопереходного транзистора Т2. С помощью потенциометра R2 устанавливается значение постоянного тока стока полевого транзистора Т1, соответствующее термостабильной точке ПТ. Отрицательная обратная связь, создаваемая включенными в цепь истока резисторами R1 и R2 с большим сопротивлением, обеспечивает стабильный ток стока несмотря на наличие изменений напряжения питания. Этот ток линейно заряжает конденсатор переменной емкости С1 до напряжения запуска однопереходного транзистора Т2. Время заряда является функцией ёмкости конденсатора С1 .

Рис. 7. Схема генератора пилообразного напряжения.

Изменяя ёмкость конденсатора С1, можно регулировать частоту повторения выходного сигнала генератора в диапазоне от 500 Гц до 50 кГц. Накопительный конденсатор быстро разряжается через проводящий переключатель на транзисторе Т2. Пилообразное напряжение с конденсатора С1 подается на выход через эмиттерный повторитель на транзисторе Т3. Амплитуда выходного сигнала определяется положением движка потенциометра R4 и может регулироваться в пределах от 0 до 8 В . Во всём диапазоне частот нелинейность пилообразного напряжения в данной схеме не превышает 1%.

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ

Одним из самых важных параметров генераторов является стабильность частоты генерируемых колебаний. Жёсткие требования к стабильности и воспроизводимости частоты в современных радиотехнических устройствах удается удовлетворить при использовании кварцевых генераторов.

Рис. 8. Схема кварцевого генератора.

Ламповые кварцевые генераторы в большинстве практических случаев являются неприемлемыми ввиду таких недостатков, как большая потребляемая мощность, большие габариты и масса. Кроме того, сама лампа является источником тепла, что затрудняет термостатирование генератора.

Ввиду малого входного сопротивления биполярных транзисторов кварцевый резонатор в автогенераторах включают только между базой и коллектором.

Полевые транзисторы, в которых отсутствуют перечисленные выше недостатки электронных ламп и биполярных транзисторов, в настоящее время достаточно часто используются в схемах кварцевых генераторов.

А.Г. Милехин

Литература:

  1. Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
  2. Барсуков Ф. И. Генераторы и селективные усилители низкой частоты. М., «Энергия», 1964.
  3. Гоноровский И. С Радиотехнические цепи и сигналы. М., «Советское радио», 1971.
  4. Ван дер Гиир. Перестройка RC-генератора в декадном диапазоне с помощью полевых транзисторов. - «Электроника», № 4, 1969.
  5. Крисилов Ю. Д. Автоматическая регулировка и стабилизация усиления транзисторных схем. М., «Советское радио», 1972.
  6. Проссер Л. Стабильные генераторы на полевых транзисторах. - «Электроника», 1966, № 20.
  7. Ханус, Мартинес. Стабильный НЧ мультивибратор с двумя ПТ. - «Электроника», 1967, №1.
  8. Илэд Л. Использование полевого транзистора для получения стабильного пилообразного напряжения. - «Электроника», 1966, № 16.
  9. Экспресс-информация «ПЭА и ВТ», 1973, № 47.
  10. Кинг Л. Стабильный кварцевый генератор на полевом транзисторе. - «Электроника», 1973, №13.
  11. Игнатов А.Н. Применение полевых транзисторов типа КП103 в аппаратуре связи. - В книге: Тенденции развития активных радиокомпонентов малой мощности. Новосибирск, "Наука", 1971.

Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение при отсутствии входных сигналов. В схемах генераторов всегда используется положительная обратная связь.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально совершенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса).

Генераторы являются составной частью многих измерительных приборов и важнейшими блоками автоматических систем.

Различают аналоговые и цифровые генераторы. Для аналоговых генераторов гармонических колебаний важной проблемой является автоматическая стабилизация амплитуды выходного напряжения. Если в схеме не предусмотрены устройства автоматической стабилизации, устойчивая работа генератора окажется невозможной. В этом случае после возникновения колебаний амплитуда выходного напряжения начнет постоянно увеличиваться, и это приведет к тому, что активный элемент генератора (например, операционный усилитель) войдет в режим насыщения. В результате напряжение на выходе будет отличаться от гармонического. Схемы автоматической стабилизации амплитуды достаточно сложны.

Структурная схема генератора приведена на рисунке ниже:

ИЭ -источник энергии,

УЭ - усили­тель,

ПОС - цепь положительной об­ратной связи,

ООС - цепь отрицатель-ной обратной свяаи,

ФК - формирова­тель колебаний (LC-контур или фазирующая RС-цепь).

По способу получения колебаний генераторы подразделяют на две группы: генераторы с внешним возбуждением и генераторы с самовозбуждением . Генератором с внешним возбуждением является усилитель мощности, на вход которого подаются электрические сигналы от источника колебаний. Генераторы с самовозбуждением со­держат формирователи колебаний; такие генераторы часто называют автогенераторами .

Принцип работы автогенератора.

Он основан на автоматическом пополнении энергии, которую затрачивает формирователь колебаний.

При этом должно соблюдаться:

-првило баланса амплитуд - произведение коэффициента усиления на коэффициент обратной связи должно быть равно 1.

-правило баланса фаз - оно означает, что колебания возникают на вполне определенной частоте, при которой происходит совпадение фаз.

При соблюдении обоих условий колебания плавно или резко возникают и автоматически поддерживаются с заданным размахом. При большом фазовом сдвиге колебания будут гасить друг друга и в дальнейшем исчезнут совсем.

Имеется много разновидностей схем генераторов си­нусоидальных колебаний. Генераторы для частот от не­скольких десятков килогерц и выше содержат LC-контуры , а генераторы для низких частот, как правило, RС-фильтры .

Схемы LC-генераторов гармонических колебаний.

В генераторах с LC-контурами исполь­зуются индуктивные катушки и конденсаторы с высокой добротностью. Автогенератор - формирователь ко­лебаний - представляет собой один или несколько уси­лительных каскадов с цепями положительной частотно-зависимой обратной связи; схемы обратной связи содер­жат колебательные цепи. Возможны различные вариан­ты включения колебательной цепи относительно электро­дов УЭ: только на входе, только на выходе или одновре­менно в нескольких участках схемы. По способам сое­динения LC -элементов с электродами усилительных элементов различают трансформаторную связь и так называемую трехточечную связь - индуктивную или емкостную. Автогенератор с трансформаторной связью показан на рис. 1.

Рис. 1. Автогенератор-формирователь синусоидальных колебаний с трансформаторной связью.

Колебательный контур, состоящий из катушки Lк и конденсатора С, является коллекторной нагрузкой тран­зистора V1, Индуктивная связь между выходом и входом усилителя обеспечивается катушкой Lб, присоеди­ненной к базе транзистора. Элементы R1, R2, Rэ, Сэ предназначены для обеспечения необходимого режима работы по постоянному току и его термостабилизации.

Благодаря конденсатору С1 обладающему малым со­противлением на частоте генерации, создается цепь для переменной составляющей тока между базой и эмиттером транзистора. Точ­ками обозначены начала обмоток Lб и Lк, поскольку необходимо соблюсти условие баланса фаз. Условие баланса фаз соблю­дается, если приток энергии совершается синхронно с изменением знака напряжения на контуре; например, в каскаде с транзистором, включенным по схеме с ОЭ, фазы входного и выходного сигналов взаимно сдвину­ты на 180° С. Поэтому концы катушки Lб надо подклю­чить так, чтобы входные и выходные колебании совпа­дали по фазе. Условие баланса амплитуд состоит в том, что поте­ри в контуре и нагрузке непрерывно пополняются за счет источника питания.

Рис. 1а. Работа автогенератора. Переходные процессы.

Работа антогенератора (Рис. 1а) начинается при включении ис­точника Ек. Начальный импульс тока возбуждает в контуре LкC колебания с частотой, которые могли бы прекратиться из-за тепловых потерь энергии в активном сопротивлении ка­тушки и конденсатора. Но поскольку между катушками Lб и Lк имеется индуктивная связь с коэффициентом взаимоиндукции М, в базовой цепи возникнет переменный ток , совпадающий по фазе с током коллекторной цепи (условие баланса фаз обеспе­чивается рациональным включением концов обмотки Lб). Усилен­ные колебания передаются из контура снова в базовую цепь, и раз­мах колебаний постепенно нарастает, достигая заданного значения.

Рис. 2. Формирователи синусоидальных колебаний на основе колебательного контура, собранного по трехточечной индуктивной (а) и емкостной (б) схеме.

Автогенератор, собранный по по трехточечной схеме , пока­зан на рис. 2, а. Колебательный контур, состоящий из секционированной катушки Lк и конденсатора Ск, является нагрузкой транзистора V1. Катушка Lк разделена на две части: один вывод ее присоединен к кол­лектору, второй - к базе транзистора; энергия подво­дится к одному из средних витков этой катушки. Такое включение обеспечивает выполнение баланса фаз и от­личается большой простотой и надежностью. Режим работы транзистора по постоянному току и его термо­стабилизация осуществляются за счет таких же элементов, как и в схеме трансформаторного генератора (см. рис. 1). Емкостная трехточечная схема (рис. 2,б) содержит в емкостной ветви колебательного контура два конденсатора, , средняя точка между кото­рыми соединена с эмиттером транзистора V1. Колеба­тельный контур включен последовательно между ис­точником энергии и УЭ. Напряжения на конденсаторах имеют противоположную полярность относи­тельно общей точки, благодаря чему обеспечивается выполнение условия баланса фаз.

Схемы RC-генераторов гармонических колебаний.

RC-автогенераторы используются для генерирования колебаний инфранизкой и низкой частоты (от долей герца до нескольких десятков килогерц); RС-генераторы могут вырабатывать колебания и более высоких частот, однако низкочастотные колебания отличаются более высокой стабильностью.

Рис. 3. Автогенераторы синусоидальных колебаний с целью из Г-образных RC-звеньев (а) и мостового типа (б).

RC-автогенератор состоит из усилителя (одно- или многокаскадного) и цепи частотно-зависимой обратной связи. Цепи обратной связи выполняются в виде «лестничных» (рис. 3, а) или мостовых (рис. 3, б) RC-схем.

RC-автогенератор с многозвенной RC-цепью обратной связи показан на рис. 3, а. Три последовательно соединенных фазиру­ющих эвена R1C1-R3С3, включенных между выходом и входом усилительного каскада, образуют цепь поло­жительной обратной связи с фильтрующими свойства­ми. Она поддерживает колебательный процесс только на одной определенной частоте; без RC-элементов однокаскадный усилитель имел бы отрицательную обрат­ную связь по напряжению. Условие баланса фаз проявляется в том, что каждое из RС-звеньев поворачивает фазу сигнала на угол 60°, а суммарный угол сдвига равен 180°. Условие баланса амплитуд удовлетворяется путем выбора соответствующего коэффициента уси­ления каскада.

Автогенератор с RC-фильтром мостового типа приведен на рис. 3,б. Два плеча моста - звенья R1C1 и R2C2 - подключены к неинвертируюшему входу уси­лителя 2 (цифра внутри треугольника означает число каскадов). Эти звенья образуют цепь ПОС. К инверти­рующему входу того же усилителя присоединена другая диагональ, составленная из нелинейных элемен­тов R3 и r , которая создает цепь ООС. В данной схеме мост обладает избирательным свойством и условие баланса фаз обеспечивается при одной частоте (на ко­торой выходной сигнал моста совпадает по фазе со входным). Регулировка частоты в данном автогенераторе проста и удобна, причем возможна в очень широком диапазоне частот. Ее осуществля­ют изменением либо сопротивлений обоих резисторов, либо емкостей обоих конденсаторов моста.

Общий недостаток всех генераторов - чувствительность генери­руемой частоты к изменению питающих напряжений, температуры, "старению" элементов схемы.

Применение генераторов с колебательными контурами (типа LC) для генерирования колебаний с частотами меньше 15--20 кГц затруднено и неудобно из-за громоздкости контуров. В настоящее время для этих целей широко используются генераторы типа RC, в которых вместо колебательного контура применяются избирательные RС-фильтры. Генераторы типа RC могут генерировать весьма стабильные синусоидальные колебания в сравнительно широком диапазоне частот от долей герца до сотен килогерц. Кроме того, они имеют малые габариты и массу. Наиболее полно преимущества генераторов типа RC проявляются в области низких частот.

Структурная схема генератора синусоидальных колебаний типа RC приведена на рис. 1.5.

Рис. 1.5

Усилитель строится по обычной резистивной схеме. Для самовозбуждения усилителя, т. е. для превращения первоначально возникших колебаний в незатухающие, необходимо на вход усилителя подавать часть выходного напряжения, превышающую входное напряжение или равную ему по величине и совпадающую с ним по фазе, иными словами, охватить усилитель положительной обратной связью достаточной глубины. При непосредственном соединении выхода усилителя с его входом происходит самовозбуждение, однако форма генерируемых колебаний будет резко отличаться от синусоидальной, поскольку условия самовозбуждения будут одновременно выполняться для колебаний многих частот. Для получения синусоидальных колебаний необходимо, чтобы эти условия выполнялись только на одной определенной частоте и резко нарушались на всех других частотах.


Рис. 1.6

Эта задача решается с помощью фазовращающей цепочки, которая имеет несколько звеньев RC и служит для поворота фазы выходного напряжения усилителя на 180°. Изменение фазы зависит от числа звеньев п и равно

В связи с тем что одно звено RC изменяет фазу на угол < 90°, минимальное число звеньев фазовращающей цепочки п -- 3. В практических схемах генераторов обычно используют трехзвенные фазовращающие цепочки.

На рис. 1.6 изображены два варианта таких цепочек, получивших название соответственно «R-параллель» и «С-параллель». Частота генерируемых синусоидальных колебаний для этих схем при условии R1 = R 2 = R 3 = R и C t = С 2 = С3 = С рассчитывается по следующим формулам: для схемы на рис. 1.6, а:

для схемы на рис. 4.6, б:

Для обеспечения баланса амплитуд коэффициент усиления усилителя должен быть равен затуханию, вносимому фазовращающей цепочкой, через которую напряжение с выхода поступает на вход усилителя, или превышать его.

Расчеты показывают, что для приведенных схем затухание

Следовательно, схемы с использованием трехзвенных фазовращающих цепочек, имеющих одинаковые звенья, могут генерировать синусоидальные колебания с частотой f 0 лишь в том случае, если коэффициент усиления усилителя превышает 29.

В фазовращающей цепи с одинаковыми звеньями каждое последующее звено оказывает шунтирующее действие на предыдущее. Для уменьшения шунтирующего действия звеньев и снижения затухания в фазовращающей цепи обратной связи могут применяться так называемые прогрессивные цепочки. В этом случае сопротивление резистора каждого последующего звена выбирается в tn раз больше сопротивления предыдущего звена, а емкости последующих звеньев во столько же раз уменьшаются:

Обычно величина т не превышает 4--5.

На рис. 1.7 приведена одна из возможных схем автогенератора типа RC с фазовращающей цепочкой.

С точки зрения обеспечения условия баланса фаз такой генератор можно было бы построить и на одном транзисторе (Т2) с общим эмиттером. Однако в этом случае цепочка обратной связи шунтирует резистор R K усилительного транзистора и снижает его усиление, а малое входное сопротивление транзистора резко увеличивает затухание в цепи обратной связи. Поэтому целесообразно разделить выход фазовращающей цепи и вход усилителя с помощью эмиттерного повторителя, собранного на транзисторе Т1.

Работа автогенератора начинается в момент включения источника питания. Возникающий при этом импульс коллекторного тока содержит широкий и непрерывный спектр частот, обязательно включающий в себя и необходимую частоту генерации. Благодаря выполнению условий самовозбуждения колебания этой частоты становятся незатухающими, тогда как колебания всех других частот, для которых условие баланса фаз не выполняется, быстро затухают.

Автогенераторы с фазовращающими цепями обычно применяются для генерации синусоидальных колебаний фиксированной частоты. Это связано с трудностью перестройки частоты в широком диапазоне. Диапазонные автогенераторы типа RC строятся несколько иначе. Рассмотрим этот вопрос более подробно.

Если усилитель поворачивает фазу входного сигнала на 2? (например, усилитель, имеющий четное число каскадов), то при охвате положительной обратной связью достаточной глубины он может генерировать электрические колебания без включения специальной фазовращающей цепочки. Для выделения требуемой частоты синусоидальных колебаний из всего спектра частот, генерируемых такой схемой, необходимо обеспечить выполнение условий самовозбуждения только для одной частоты. С этой целью в цепь обратной связи может быть включена последовательно-параллельная избирательная цепочка, схема которой приведена на рис. 1.8.

Рис. 1.7

Определим свойства этой цепочки, рассматривая ее как делитель напряжения.

Между выходным и входным напряжениями существует очевидная зависимость


Коэффициент передачи напряжения этой цепью

На квазирезонансной частоте w 0 коэффициент передачи напряжения должен быть равен действительному числу. Это возможно лишь в том случае, если сопротивления, выраженные соответствующей математической записью в числителе и знаменателе последней формулы, будут иметь одинаковый характер. Данное условие обеспечивается лишь в том случае, если действительная часть знаменателя равна нулю, т. е.

Отсюда частота квазирезонанса

Что же касается коэффициента передачи напряжения, то на квазирезонансной частоте он равен

Подставляя в эту формулу значение

Считая R1 = R 2 = R и C 1 = С 2 = С, найдем окончательные значения f 0

Затухание, вносимое рассматриваемой избирательной цепочкой на квазирезонансной частоте, равно

Это означает, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, также должен быть равен 3. Очевидно, что это требование выполнить достаточно легко. Реальный транзисторный усилитель, имеющий два каскада (наименьшее четное число), позволяет получить усиление по напряжению, намного превышающее К о = 3. Поэтому целесообразно наряду с положительной обратной связью ввести в усилитель отрицательную обратную связь, которая, снижая коэффициент усиления, в то же время существенно уменьшает возможные нелинейные искажения генерируемых колебаний. Принципиальная схема такого генератора приведена на рис. 1.9.


Схема транзисторного RC-генератора с перестройкой частоты

Терморезистор в цепи эмиттера транзистора Т1 предназначен для стабилизации амплитуды выходного напряжения при изменении температуры. Регулировка частоты осуществляется с помощью спаренного потенциометра R1R2.

В настоящее время дискретные элементы (транзисторы) достаточно редко используются для постоения генераторов. Чаще всего для этих целей применяют различные типы интегральных микросхем. Схемы, построенные на ОУ, перемножителях, компараторах и таймерах, отличаются простотой, стабильностью параметров, универсальностью. Гибкость и универсальность ОУ позволяют с минимальным количеством внешних компонентов создавать простые, но в то же время удобные при настройке и регулировке генераторы практически всех типов с удовлетворительными параметрами.

Принцип работы таких генераторов основан на использовании в цепях ОС фазосдвигающих или резонансных элементов: моста Вина, двойного Т-образного моста, сдвигающих RС-цепей.

Существуют и другие способы генерирования синусоидальных колебаний, например фильтрацией импульсов треугольной формы или выделением первой гармонической составляющей прямоугольных импульсов.